Bitcoin Core  26.99.0
P2P Digital Currency
net_processing.cpp
Go to the documentation of this file.
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2022 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 
6 #include <net_processing.h>
7 
8 #include <addrman.h>
9 #include <banman.h>
10 #include <blockencodings.h>
11 #include <blockfilter.h>
12 #include <chainparams.h>
13 #include <consensus/amount.h>
14 #include <consensus/validation.h>
15 #include <deploymentstatus.h>
16 #include <hash.h>
17 #include <headerssync.h>
18 #include <index/blockfilterindex.h>
19 #include <kernel/chain.h>
20 #include <kernel/mempool_entry.h>
21 #include <logging.h>
22 #include <merkleblock.h>
23 #include <netbase.h>
24 #include <netmessagemaker.h>
25 #include <node/blockstorage.h>
26 #include <node/txreconciliation.h>
27 #include <policy/fees.h>
28 #include <policy/policy.h>
29 #include <policy/settings.h>
30 #include <primitives/block.h>
31 #include <primitives/transaction.h>
32 #include <random.h>
33 #include <reverse_iterator.h>
34 #include <scheduler.h>
35 #include <streams.h>
36 #include <sync.h>
37 #include <timedata.h>
38 #include <tinyformat.h>
39 #include <txmempool.h>
40 #include <txorphanage.h>
41 #include <txrequest.h>
42 #include <util/check.h>
43 #include <util/strencodings.h>
44 #include <util/trace.h>
45 #include <validation.h>
46 
47 #include <algorithm>
48 #include <atomic>
49 #include <chrono>
50 #include <future>
51 #include <memory>
52 #include <optional>
53 #include <typeinfo>
54 #include <utility>
55 
58 static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
59 static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
61 static constexpr auto HEADERS_RESPONSE_TIME{2min};
65 static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4;
67 static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
69 static constexpr auto STALE_CHECK_INTERVAL{10min};
71 static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
73 static constexpr auto MINIMUM_CONNECT_TIME{30s};
75 static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
78 static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
81 static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
83 static constexpr auto PING_INTERVAL{2min};
85 static const unsigned int MAX_LOCATOR_SZ = 101;
87 static const unsigned int MAX_INV_SZ = 50000;
90 static constexpr int32_t MAX_PEER_TX_REQUEST_IN_FLIGHT = 100;
95 static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS = 5000;
97 static constexpr auto TXID_RELAY_DELAY{2s};
99 static constexpr auto NONPREF_PEER_TX_DELAY{2s};
101 static constexpr auto OVERLOADED_PEER_TX_DELAY{2s};
103 static constexpr auto GETDATA_TX_INTERVAL{60s};
105 static const unsigned int MAX_GETDATA_SZ = 1000;
107 static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
110 static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
112 static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
115 static const unsigned int MAX_HEADERS_RESULTS = 2000;
118 static const int MAX_CMPCTBLOCK_DEPTH = 5;
120 static const int MAX_BLOCKTXN_DEPTH = 10;
125 static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
127 static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
129 static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
131 static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
133 static const int MAX_NUM_UNCONNECTING_HEADERS_MSGS = 10;
135 static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
137 static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
139 static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
141 static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
144 static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL{5s};
148 static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL{2s};
151 static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
155 static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
156 static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
157 static_assert(INVENTORY_BROADCAST_MAX <= MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
159 static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
161 static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
163 static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
165 static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
167 static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
169 static constexpr size_t MAX_ADDR_TO_SEND{1000};
172 static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
178 static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
179 
180 // Internal stuff
181 namespace {
183 struct QueuedBlock {
185  const CBlockIndex* pindex;
187  std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
188 };
189 
202 struct Peer {
204  const NodeId m_id{0};
205 
219  const ServiceFlags m_our_services;
221  std::atomic<ServiceFlags> m_their_services{NODE_NONE};
222 
224  Mutex m_misbehavior_mutex;
226  int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0};
228  bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
229 
231  Mutex m_block_inv_mutex;
235  std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
239  std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
244  uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
245 
247  std::atomic<int> m_starting_height{-1};
248 
250  std::atomic<uint64_t> m_ping_nonce_sent{0};
252  std::atomic<std::chrono::microseconds> m_ping_start{0us};
254  std::atomic<bool> m_ping_queued{false};
255 
257  std::atomic<bool> m_wtxid_relay{false};
264  std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
265 
266  struct TxRelay {
267  mutable RecursiveMutex m_bloom_filter_mutex;
269  bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
271  std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
272 
273  mutable RecursiveMutex m_tx_inventory_mutex;
277  CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
282  std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
286  bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
289  std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
292  uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
293 
295  std::atomic<CAmount> m_fee_filter_received{0};
296  };
297 
298  /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
299  TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
300  {
301  LOCK(m_tx_relay_mutex);
302  Assume(!m_tx_relay);
303  m_tx_relay = std::make_unique<Peer::TxRelay>();
304  return m_tx_relay.get();
305  };
306 
307  TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
308  {
309  return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
310  };
311 
313  std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
323  std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
338  std::atomic_bool m_addr_relay_enabled{false};
340  bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
342  mutable Mutex m_addr_send_times_mutex;
344  std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
346  std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
349  std::atomic_bool m_wants_addrv2{false};
351  bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
354  double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
356  std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
358  std::atomic<uint64_t> m_addr_rate_limited{0};
360  std::atomic<uint64_t> m_addr_processed{0};
361 
363  bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
364 
366  Mutex m_getdata_requests_mutex;
368  std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
369 
372 
374  Mutex m_headers_sync_mutex;
377  std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
378 
380  std::atomic<bool> m_sent_sendheaders{false};
381 
383  int m_num_unconnecting_headers_msgs GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
384 
386  std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
387 
389  bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
390 
391  explicit Peer(NodeId id, ServiceFlags our_services)
392  : m_id{id}
393  , m_our_services{our_services}
394  {}
395 
396 private:
397  mutable Mutex m_tx_relay_mutex;
398 
400  std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
401 };
402 
403 using PeerRef = std::shared_ptr<Peer>;
404 
411 struct CNodeState {
413  const CBlockIndex* pindexBestKnownBlock{nullptr};
415  uint256 hashLastUnknownBlock{};
417  const CBlockIndex* pindexLastCommonBlock{nullptr};
419  const CBlockIndex* pindexBestHeaderSent{nullptr};
421  bool fSyncStarted{false};
423  std::chrono::microseconds m_stalling_since{0us};
424  std::list<QueuedBlock> vBlocksInFlight;
426  std::chrono::microseconds m_downloading_since{0us};
428  bool fPreferredDownload{false};
430  bool m_requested_hb_cmpctblocks{false};
432  bool m_provides_cmpctblocks{false};
433 
458  struct ChainSyncTimeoutState {
460  std::chrono::seconds m_timeout{0s};
462  const CBlockIndex* m_work_header{nullptr};
464  bool m_sent_getheaders{false};
466  bool m_protect{false};
467  };
468 
469  ChainSyncTimeoutState m_chain_sync;
470 
472  int64_t m_last_block_announcement{0};
473 
475  const bool m_is_inbound;
476 
477  CNodeState(bool is_inbound) : m_is_inbound(is_inbound) {}
478 };
479 
480 class PeerManagerImpl final : public PeerManager
481 {
482 public:
483  PeerManagerImpl(CConnman& connman, AddrMan& addrman,
484  BanMan* banman, ChainstateManager& chainman,
485  CTxMemPool& pool, Options opts);
486 
488  void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
489  EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
490  void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
491  EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
492  void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
493  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
494  void BlockChecked(const CBlock& block, const BlockValidationState& state) override
495  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
496  void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
497  EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
498 
500  void InitializeNode(CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
501  void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex);
502  bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
503  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
504  bool SendMessages(CNode* pto) override
505  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, g_msgproc_mutex);
506 
508  void StartScheduledTasks(CScheduler& scheduler) override;
509  void CheckForStaleTipAndEvictPeers() override;
510  std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
511  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
512  bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
513  bool IgnoresIncomingTxs() override { return m_opts.ignore_incoming_txs; }
514  void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
515  void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
516  void SetBestHeight(int height) override { m_best_height = height; };
517  void UnitTestMisbehaving(NodeId peer_id, int howmuch) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), howmuch, ""); };
518  void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
519  const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
520  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
521  void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
522 
523 private:
525  void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
526 
528  void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
529 
531  void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
532 
535  PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
536 
539  PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
540 
545  void Misbehaving(Peer& peer, int howmuch, const std::string& message);
546 
557  bool MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
558  bool via_compact_block, const std::string& message = "")
559  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
560 
566  bool MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
567  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
568 
575  bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
576 
588  bool ProcessOrphanTx(Peer& peer)
589  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
590 
598  void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
599  std::vector<CBlockHeader>&& headers,
600  bool via_compact_block)
601  EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
604  bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
606  arith_uint256 GetAntiDoSWorkThreshold();
610  void HandleFewUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
612  bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
631  bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
632  std::vector<CBlockHeader>& headers)
633  EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
645  bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
646  const CBlockIndex* chain_start_header,
647  std::vector<CBlockHeader>& headers)
648  EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
649 
652  bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
653 
658  bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
660  void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
662  void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
663  EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
664 
665  void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
666 
670  void AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
672 
674  void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
675  template <typename... Args>
676  void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
677  {
678  m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
679  }
680 
682  void PushNodeVersion(CNode& pnode, const Peer& peer);
683 
688  void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
689 
691  void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
692 
694  void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
695 
703  void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
704 
706  void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
707 
709 
711 
712  const CChainParams& m_chainparams;
713  CConnman& m_connman;
714  AddrMan& m_addrman;
716  BanMan* const m_banman;
717  ChainstateManager& m_chainman;
718  CTxMemPool& m_mempool;
719  TxRequestTracker m_txrequest GUARDED_BY(::cs_main);
720  std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
721 
723  std::atomic<int> m_best_height{-1};
724 
726  std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
727 
728  const Options m_opts;
729 
730  bool RejectIncomingTxs(const CNode& peer) const;
731 
734  bool m_initial_sync_finished GUARDED_BY(cs_main){false};
735 
738  mutable Mutex m_peer_mutex;
745  std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
746 
748  std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
749 
751  const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
753  CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
754 
755  uint32_t GetFetchFlags(const Peer& peer) const;
756 
757  std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
758 
760  int nSyncStarted GUARDED_BY(cs_main) = 0;
761 
763  uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
764 
771  std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
772 
774  std::atomic<int> m_wtxid_relay_peers{0};
775 
777  int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
778 
780  int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
781 
783  std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
784 
785  bool AlreadyHaveTx(const GenTxid& gtxid)
786  EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_recent_confirmed_transactions_mutex);
787 
822  CRollingBloomFilter m_recent_rejects GUARDED_BY(::cs_main){120'000, 0.000'001};
823  uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main);
824 
825  /*
826  * Filter for transactions that have been recently confirmed.
827  * We use this to avoid requesting transactions that have already been
828  * confirnmed.
829  *
830  * Blocks don't typically have more than 4000 transactions, so this should
831  * be at least six blocks (~1 hr) worth of transactions that we can store,
832  * inserting both a txid and wtxid for every observed transaction.
833  * If the number of transactions appearing in a block goes up, or if we are
834  * seeing getdata requests more than an hour after initial announcement, we
835  * can increase this number.
836  * The false positive rate of 1/1M should come out to less than 1
837  * transaction per day that would be inadvertently ignored (which is the
838  * same probability that we have in the reject filter).
839  */
840  Mutex m_recent_confirmed_transactions_mutex;
841  CRollingBloomFilter m_recent_confirmed_transactions GUARDED_BY(m_recent_confirmed_transactions_mutex){48'000, 0.000'001};
842 
849  std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
850  std::chrono::seconds average_interval);
851 
852 
853  // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
854  Mutex m_most_recent_block_mutex;
855  std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
856  std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
857  uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
858  std::unique_ptr<const std::map<uint256, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
859 
860  // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
862  Mutex m_headers_presync_mutex;
870  using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
872  std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
874  NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
876  std::atomic_bool m_headers_presync_should_signal{false};
877 
879  int m_highest_fast_announce GUARDED_BY(::cs_main){0};
880 
882  bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
883 
885  bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
886 
894  void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
895 
896  /* Mark a block as in flight
897  * Returns false, still setting pit, if the block was already in flight from the same peer
898  * pit will only be valid as long as the same cs_main lock is being held
899  */
900  bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
901 
902  bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
903 
907  void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
908 
910  void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
911 
939  void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
940 
941  /* Multimap used to preserve insertion order */
942  typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
943  BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
944 
946  std::atomic<std::chrono::seconds> m_last_tip_update{0s};
947 
949  CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
951 
952  void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
953  EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
955 
957  void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
958 
960  void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
961  EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
962 
969  void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
970 
972  std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
973 
975  int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
976 
978  TxOrphanage m_orphanage;
979 
980  void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
981 
985  std::vector<std::pair<uint256, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
987  size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
988 
990  void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
992  void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
993  bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
994 
1001  bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1002  bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1003  void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1004  EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
1005 
1021  bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1022  BlockFilterType filter_type, uint32_t start_height,
1023  const uint256& stop_hash, uint32_t max_height_diff,
1024  const CBlockIndex*& stop_index,
1025  BlockFilterIndex*& filter_index);
1026 
1036  void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1037 
1047  void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1048 
1058  void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1059 
1066  bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1067 
1068  void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1069  void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1070 };
1071 
1072 const CNodeState* PeerManagerImpl::State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1073 {
1074  std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1075  if (it == m_node_states.end())
1076  return nullptr;
1077  return &it->second;
1078 }
1079 
1080 CNodeState* PeerManagerImpl::State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1081 {
1082  return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1083 }
1084 
1090 static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1091 {
1092  return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1093 }
1094 
1095 void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1096 {
1097  assert(peer.m_addr_known);
1098  peer.m_addr_known->insert(addr.GetKey());
1099 }
1100 
1101 void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1102 {
1103  // Known checking here is only to save space from duplicates.
1104  // Before sending, we'll filter it again for known addresses that were
1105  // added after addresses were pushed.
1106  assert(peer.m_addr_known);
1107  if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1108  if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1109  peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1110  } else {
1111  peer.m_addrs_to_send.push_back(addr);
1112  }
1113  }
1114 }
1115 
1116 static void AddKnownTx(Peer& peer, const uint256& hash)
1117 {
1118  auto tx_relay = peer.GetTxRelay();
1119  if (!tx_relay) return;
1120 
1121  LOCK(tx_relay->m_tx_inventory_mutex);
1122  tx_relay->m_tx_inventory_known_filter.insert(hash);
1123 }
1124 
1126 static bool CanServeBlocks(const Peer& peer)
1127 {
1128  return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1129 }
1130 
1133 static bool IsLimitedPeer(const Peer& peer)
1134 {
1135  return (!(peer.m_their_services & NODE_NETWORK) &&
1136  (peer.m_their_services & NODE_NETWORK_LIMITED));
1137 }
1138 
1140 static bool CanServeWitnesses(const Peer& peer)
1141 {
1142  return peer.m_their_services & NODE_WITNESS;
1143 }
1144 
1145 std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1146  std::chrono::seconds average_interval)
1147 {
1148  if (m_next_inv_to_inbounds.load() < now) {
1149  // If this function were called from multiple threads simultaneously
1150  // it would possible that both update the next send variable, and return a different result to their caller.
1151  // This is not possible in practice as only the net processing thread invokes this function.
1152  m_next_inv_to_inbounds = GetExponentialRand(now, average_interval);
1153  }
1154  return m_next_inv_to_inbounds;
1155 }
1156 
1157 bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1158 {
1159  return mapBlocksInFlight.count(hash);
1160 }
1161 
1162 bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1163 {
1164  for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1165  auto [nodeid, block_it] = range.first->second;
1166  CNodeState& nodestate = *Assert(State(nodeid));
1167  if (!nodestate.m_is_inbound) return true;
1168  }
1169 
1170  return false;
1171 }
1172 
1173 void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1174 {
1175  auto range = mapBlocksInFlight.equal_range(hash);
1176  if (range.first == range.second) {
1177  // Block was not requested from any peer
1178  return;
1179  }
1180 
1181  // We should not have requested too many of this block
1182  Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1183 
1184  while (range.first != range.second) {
1185  auto [node_id, list_it] = range.first->second;
1186 
1187  if (from_peer && *from_peer != node_id) {
1188  range.first++;
1189  continue;
1190  }
1191 
1192  CNodeState& state = *Assert(State(node_id));
1193 
1194  if (state.vBlocksInFlight.begin() == list_it) {
1195  // First block on the queue was received, update the start download time for the next one
1196  state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1197  }
1198  state.vBlocksInFlight.erase(list_it);
1199 
1200  if (state.vBlocksInFlight.empty()) {
1201  // Last validated block on the queue for this peer was received.
1202  m_peers_downloading_from--;
1203  }
1204  state.m_stalling_since = 0us;
1205 
1206  range.first = mapBlocksInFlight.erase(range.first);
1207  }
1208 }
1209 
1210 bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1211 {
1212  const uint256& hash{block.GetBlockHash()};
1213 
1214  CNodeState *state = State(nodeid);
1215  assert(state != nullptr);
1216 
1217  Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1218 
1219  // Short-circuit most stuff in case it is from the same node
1220  for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1221  if (range.first->second.first == nodeid) {
1222  if (pit) {
1223  *pit = &range.first->second.second;
1224  }
1225  return false;
1226  }
1227  }
1228 
1229  // Make sure it's not being fetched already from same peer.
1230  RemoveBlockRequest(hash, nodeid);
1231 
1232  std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1233  {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1234  if (state->vBlocksInFlight.size() == 1) {
1235  // We're starting a block download (batch) from this peer.
1236  state->m_downloading_since = GetTime<std::chrono::microseconds>();
1237  m_peers_downloading_from++;
1238  }
1239  auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1240  if (pit) {
1241  *pit = &itInFlight->second.second;
1242  }
1243  return true;
1244 }
1245 
1246 void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1247 {
1249 
1250  // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1251  // mempool will not contain the transactions necessary to reconstruct the
1252  // compact block.
1253  if (m_opts.ignore_incoming_txs) return;
1254 
1255  CNodeState* nodestate = State(nodeid);
1256  if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1257  // Don't request compact blocks if the peer has not signalled support
1258  return;
1259  }
1260 
1261  int num_outbound_hb_peers = 0;
1262  for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1263  if (*it == nodeid) {
1264  lNodesAnnouncingHeaderAndIDs.erase(it);
1265  lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1266  return;
1267  }
1268  CNodeState *state = State(*it);
1269  if (state != nullptr && !state->m_is_inbound) ++num_outbound_hb_peers;
1270  }
1271  if (nodestate->m_is_inbound) {
1272  // If we're adding an inbound HB peer, make sure we're not removing
1273  // our last outbound HB peer in the process.
1274  if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1275  CNodeState *remove_node = State(lNodesAnnouncingHeaderAndIDs.front());
1276  if (remove_node != nullptr && !remove_node->m_is_inbound) {
1277  // Put the HB outbound peer in the second slot, so that it
1278  // doesn't get removed.
1279  std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1280  }
1281  }
1282  }
1283  m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1285  if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1286  // As per BIP152, we only get 3 of our peers to announce
1287  // blocks using compact encodings.
1288  m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1289  MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1290  // save BIP152 bandwidth state: we select peer to be low-bandwidth
1291  pnodeStop->m_bip152_highbandwidth_to = false;
1292  return true;
1293  });
1294  lNodesAnnouncingHeaderAndIDs.pop_front();
1295  }
1296  MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1297  // save BIP152 bandwidth state: we select peer to be high-bandwidth
1298  pfrom->m_bip152_highbandwidth_to = true;
1299  lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1300  return true;
1301  });
1302 }
1303 
1304 bool PeerManagerImpl::TipMayBeStale()
1305 {
1307  const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1308  if (m_last_tip_update.load() == 0s) {
1309  m_last_tip_update = GetTime<std::chrono::seconds>();
1310  }
1311  return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1312 }
1313 
1314 bool PeerManagerImpl::CanDirectFetch()
1315 {
1316  return m_chainman.ActiveChain().Tip()->Time() > GetAdjustedTime() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1317 }
1318 
1319 static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1320 {
1321  if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1322  return true;
1323  if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1324  return true;
1325  return false;
1326 }
1327 
1328 void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1329  CNodeState *state = State(nodeid);
1330  assert(state != nullptr);
1331 
1332  if (!state->hashLastUnknownBlock.IsNull()) {
1333  const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1334  if (pindex && pindex->nChainWork > 0) {
1335  if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1336  state->pindexBestKnownBlock = pindex;
1337  }
1338  state->hashLastUnknownBlock.SetNull();
1339  }
1340  }
1341 }
1342 
1343 void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1344  CNodeState *state = State(nodeid);
1345  assert(state != nullptr);
1346 
1347  ProcessBlockAvailability(nodeid);
1348 
1349  const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1350  if (pindex && pindex->nChainWork > 0) {
1351  // An actually better block was announced.
1352  if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1353  state->pindexBestKnownBlock = pindex;
1354  }
1355  } else {
1356  // An unknown block was announced; just assume that the latest one is the best one.
1357  state->hashLastUnknownBlock = hash;
1358  }
1359 }
1360 
1361 // Logic for calculating which blocks to download from a given peer, given our current tip.
1362 void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1363 {
1364  if (count == 0)
1365  return;
1366 
1367  vBlocks.reserve(vBlocks.size() + count);
1368  CNodeState *state = State(peer.m_id);
1369  assert(state != nullptr);
1370 
1371  // Make sure pindexBestKnownBlock is up to date, we'll need it.
1372  ProcessBlockAvailability(peer.m_id);
1373 
1374  if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1375  // This peer has nothing interesting.
1376  return;
1377  }
1378 
1379  if (state->pindexLastCommonBlock == nullptr) {
1380  // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1381  // Guessing wrong in either direction is not a problem.
1382  state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1383  }
1384 
1385  // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1386  // of its current tip anymore. Go back enough to fix that.
1387  state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1388  if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1389  return;
1390 
1391  const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1392  // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1393  // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1394  // download that next block if the window were 1 larger.
1395  int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1396 
1397  FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1398 }
1399 
1400 void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1401 {
1402  Assert(from_tip);
1403  Assert(target_block);
1404 
1405  if (vBlocks.size() >= count) {
1406  return;
1407  }
1408 
1409  vBlocks.reserve(count);
1410  CNodeState *state = Assert(State(peer.m_id));
1411 
1412  if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1413  // This peer can't provide us the complete series of blocks leading up to the
1414  // assumeutxo snapshot base.
1415  //
1416  // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1417  // will eventually crash when we try to reorg to it. Let other logic
1418  // deal with whether we disconnect this peer.
1419  //
1420  // TODO at some point in the future, we might choose to request what blocks
1421  // this peer does have from the historical chain, despite it not having a
1422  // complete history beneath the snapshot base.
1423  return;
1424  }
1425 
1426  FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1427 }
1428 
1429 void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1430 {
1431  std::vector<const CBlockIndex*> vToFetch;
1432  int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1433  NodeId waitingfor = -1;
1434  while (pindexWalk->nHeight < nMaxHeight) {
1435  // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1436  // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1437  // as iterating over ~100 CBlockIndex* entries anyway.
1438  int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1439  vToFetch.resize(nToFetch);
1440  pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1441  vToFetch[nToFetch - 1] = pindexWalk;
1442  for (unsigned int i = nToFetch - 1; i > 0; i--) {
1443  vToFetch[i - 1] = vToFetch[i]->pprev;
1444  }
1445 
1446  // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1447  // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1448  // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1449  // already part of our chain (and therefore don't need it even if pruned).
1450  for (const CBlockIndex* pindex : vToFetch) {
1451  if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1452  // We consider the chain that this peer is on invalid.
1453  return;
1454  }
1455  if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1456  // We wouldn't download this block or its descendants from this peer.
1457  return;
1458  }
1459  if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1460  if (activeChain && pindex->HaveNumChainTxs())
1461  state->pindexLastCommonBlock = pindex;
1462  } else if (!IsBlockRequested(pindex->GetBlockHash())) {
1463  // The block is not already downloaded, and not yet in flight.
1464  if (pindex->nHeight > nWindowEnd) {
1465  // We reached the end of the window.
1466  if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1467  // We aren't able to fetch anything, but we would be if the download window was one larger.
1468  if (nodeStaller) *nodeStaller = waitingfor;
1469  }
1470  return;
1471  }
1472  vBlocks.push_back(pindex);
1473  if (vBlocks.size() == count) {
1474  return;
1475  }
1476  } else if (waitingfor == -1) {
1477  // This is the first already-in-flight block.
1478  waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1479  }
1480  }
1481  }
1482 }
1483 
1484 } // namespace
1485 
1486 void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1487 {
1488  uint64_t my_services{peer.m_our_services};
1489  const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1490  uint64_t nonce = pnode.GetLocalNonce();
1491  const int nNodeStartingHeight{m_best_height};
1492  NodeId nodeid = pnode.GetId();
1493  CAddress addr = pnode.addr;
1494 
1495  CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
1496  uint64_t your_services{addr.nServices};
1497 
1498  const bool tx_relay{!RejectIncomingTxs(pnode)};
1499  MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1500  your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1501  my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1502  nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1503 
1504  if (fLogIPs) {
1505  LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1506  } else {
1507  LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1508  }
1509 }
1510 
1511 void PeerManagerImpl::AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
1512 {
1513  AssertLockHeld(::cs_main); // For m_txrequest
1514  NodeId nodeid = node.GetId();
1515  if (!node.HasPermission(NetPermissionFlags::Relay) && m_txrequest.Count(nodeid) >= MAX_PEER_TX_ANNOUNCEMENTS) {
1516  // Too many queued announcements from this peer
1517  return;
1518  }
1519  const CNodeState* state = State(nodeid);
1520 
1521  // Decide the TxRequestTracker parameters for this announcement:
1522  // - "preferred": if fPreferredDownload is set (= outbound, or NetPermissionFlags::NoBan permission)
1523  // - "reqtime": current time plus delays for:
1524  // - NONPREF_PEER_TX_DELAY for announcements from non-preferred connections
1525  // - TXID_RELAY_DELAY for txid announcements while wtxid peers are available
1526  // - OVERLOADED_PEER_TX_DELAY for announcements from peers which have at least
1527  // MAX_PEER_TX_REQUEST_IN_FLIGHT requests in flight (and don't have NetPermissionFlags::Relay).
1528  auto delay{0us};
1529  const bool preferred = state->fPreferredDownload;
1530  if (!preferred) delay += NONPREF_PEER_TX_DELAY;
1531  if (!gtxid.IsWtxid() && m_wtxid_relay_peers > 0) delay += TXID_RELAY_DELAY;
1532  const bool overloaded = !node.HasPermission(NetPermissionFlags::Relay) &&
1533  m_txrequest.CountInFlight(nodeid) >= MAX_PEER_TX_REQUEST_IN_FLIGHT;
1534  if (overloaded) delay += OVERLOADED_PEER_TX_DELAY;
1535  m_txrequest.ReceivedInv(nodeid, gtxid, preferred, current_time + delay);
1536 }
1537 
1538 void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1539 {
1540  LOCK(cs_main);
1541  CNodeState *state = State(node);
1542  if (state) state->m_last_block_announcement = time_in_seconds;
1543 }
1544 
1545 void PeerManagerImpl::InitializeNode(CNode& node, ServiceFlags our_services)
1546 {
1547  NodeId nodeid = node.GetId();
1548  {
1549  LOCK(cs_main);
1550  m_node_states.emplace_hint(m_node_states.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(node.IsInboundConn()));
1551  assert(m_txrequest.Count(nodeid) == 0);
1552  }
1553  PeerRef peer = std::make_shared<Peer>(nodeid, our_services);
1554  {
1555  LOCK(m_peer_mutex);
1556  m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1557  }
1558  if (!node.IsInboundConn()) {
1559  PushNodeVersion(node, *peer);
1560  }
1561 }
1562 
1563 void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1564 {
1565  std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1566 
1567  for (const auto& txid : unbroadcast_txids) {
1568  CTransactionRef tx = m_mempool.get(txid);
1569 
1570  if (tx != nullptr) {
1571  RelayTransaction(txid, tx->GetWitnessHash());
1572  } else {
1573  m_mempool.RemoveUnbroadcastTx(txid, true);
1574  }
1575  }
1576 
1577  // Schedule next run for 10-15 minutes in the future.
1578  // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1579  const std::chrono::milliseconds delta = 10min + GetRandMillis(5min);
1580  scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1581 }
1582 
1583 void PeerManagerImpl::FinalizeNode(const CNode& node)
1584 {
1585  NodeId nodeid = node.GetId();
1586  int misbehavior{0};
1587  {
1588  LOCK(cs_main);
1589  {
1590  // We remove the PeerRef from g_peer_map here, but we don't always
1591  // destruct the Peer. Sometimes another thread is still holding a
1592  // PeerRef, so the refcount is >= 1. Be careful not to do any
1593  // processing here that assumes Peer won't be changed before it's
1594  // destructed.
1595  PeerRef peer = RemovePeer(nodeid);
1596  assert(peer != nullptr);
1597  misbehavior = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score);
1598  m_wtxid_relay_peers -= peer->m_wtxid_relay;
1599  assert(m_wtxid_relay_peers >= 0);
1600  }
1601  CNodeState *state = State(nodeid);
1602  assert(state != nullptr);
1603 
1604  if (state->fSyncStarted)
1605  nSyncStarted--;
1606 
1607  for (const QueuedBlock& entry : state->vBlocksInFlight) {
1608  auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1609  while (range.first != range.second) {
1610  auto [node_id, list_it] = range.first->second;
1611  if (node_id != nodeid) {
1612  range.first++;
1613  } else {
1614  range.first = mapBlocksInFlight.erase(range.first);
1615  }
1616  }
1617  }
1618  m_orphanage.EraseForPeer(nodeid);
1619  m_txrequest.DisconnectedPeer(nodeid);
1620  if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1621  m_num_preferred_download_peers -= state->fPreferredDownload;
1622  m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1623  assert(m_peers_downloading_from >= 0);
1624  m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1625  assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1626 
1627  m_node_states.erase(nodeid);
1628 
1629  if (m_node_states.empty()) {
1630  // Do a consistency check after the last peer is removed.
1631  assert(mapBlocksInFlight.empty());
1632  assert(m_num_preferred_download_peers == 0);
1633  assert(m_peers_downloading_from == 0);
1634  assert(m_outbound_peers_with_protect_from_disconnect == 0);
1635  assert(m_wtxid_relay_peers == 0);
1636  assert(m_txrequest.Size() == 0);
1637  assert(m_orphanage.Size() == 0);
1638  }
1639  } // cs_main
1640  if (node.fSuccessfullyConnected && misbehavior == 0 &&
1641  !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1642  // Only change visible addrman state for full outbound peers. We don't
1643  // call Connected() for feeler connections since they don't have
1644  // fSuccessfullyConnected set.
1645  m_addrman.Connected(node.addr);
1646  }
1647  {
1648  LOCK(m_headers_presync_mutex);
1649  m_headers_presync_stats.erase(nodeid);
1650  }
1651  LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1652 }
1653 
1654 PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1655 {
1656  LOCK(m_peer_mutex);
1657  auto it = m_peer_map.find(id);
1658  return it != m_peer_map.end() ? it->second : nullptr;
1659 }
1660 
1661 PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1662 {
1663  PeerRef ret;
1664  LOCK(m_peer_mutex);
1665  auto it = m_peer_map.find(id);
1666  if (it != m_peer_map.end()) {
1667  ret = std::move(it->second);
1668  m_peer_map.erase(it);
1669  }
1670  return ret;
1671 }
1672 
1673 bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1674 {
1675  {
1676  LOCK(cs_main);
1677  const CNodeState* state = State(nodeid);
1678  if (state == nullptr)
1679  return false;
1680  stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1681  stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1682  for (const QueuedBlock& queue : state->vBlocksInFlight) {
1683  if (queue.pindex)
1684  stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1685  }
1686  }
1687 
1688  PeerRef peer = GetPeerRef(nodeid);
1689  if (peer == nullptr) return false;
1690  stats.their_services = peer->m_their_services;
1691  stats.m_starting_height = peer->m_starting_height;
1692  // It is common for nodes with good ping times to suddenly become lagged,
1693  // due to a new block arriving or other large transfer.
1694  // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1695  // since pingtime does not update until the ping is complete, which might take a while.
1696  // So, if a ping is taking an unusually long time in flight,
1697  // the caller can immediately detect that this is happening.
1698  auto ping_wait{0us};
1699  if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1700  ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1701  }
1702 
1703  if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1704  stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1705  stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1706  } else {
1707  stats.m_relay_txs = false;
1708  stats.m_fee_filter_received = 0;
1709  }
1710 
1711  stats.m_ping_wait = ping_wait;
1712  stats.m_addr_processed = peer->m_addr_processed.load();
1713  stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1714  stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1715  {
1716  LOCK(peer->m_headers_sync_mutex);
1717  if (peer->m_headers_sync) {
1718  stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1719  }
1720  }
1721 
1722  return true;
1723 }
1724 
1725 void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1726 {
1727  if (m_opts.max_extra_txs <= 0)
1728  return;
1729  if (!vExtraTxnForCompact.size())
1730  vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1731  vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetWitnessHash(), tx);
1732  vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1733 }
1734 
1735 void PeerManagerImpl::Misbehaving(Peer& peer, int howmuch, const std::string& message)
1736 {
1737  assert(howmuch > 0);
1738 
1739  LOCK(peer.m_misbehavior_mutex);
1740  const int score_before{peer.m_misbehavior_score};
1741  peer.m_misbehavior_score += howmuch;
1742  const int score_now{peer.m_misbehavior_score};
1743 
1744  const std::string message_prefixed = message.empty() ? "" : (": " + message);
1745  std::string warning;
1746 
1747  if (score_now >= DISCOURAGEMENT_THRESHOLD && score_before < DISCOURAGEMENT_THRESHOLD) {
1748  warning = " DISCOURAGE THRESHOLD EXCEEDED";
1749  peer.m_should_discourage = true;
1750  }
1751 
1752  LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s%s\n",
1753  peer.m_id, score_before, score_now, warning, message_prefixed);
1754 }
1755 
1756 bool PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1757  bool via_compact_block, const std::string& message)
1758 {
1759  PeerRef peer{GetPeerRef(nodeid)};
1760  switch (state.GetResult()) {
1762  break;
1764  // We didn't try to process the block because the header chain may have
1765  // too little work.
1766  break;
1767  // The node is providing invalid data:
1770  if (!via_compact_block) {
1771  if (peer) Misbehaving(*peer, 100, message);
1772  return true;
1773  }
1774  break;
1776  {
1777  LOCK(cs_main);
1778  CNodeState *node_state = State(nodeid);
1779  if (node_state == nullptr) {
1780  break;
1781  }
1782 
1783  // Discourage outbound (but not inbound) peers if on an invalid chain.
1784  // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1785  if (!via_compact_block && !node_state->m_is_inbound) {
1786  if (peer) Misbehaving(*peer, 100, message);
1787  return true;
1788  }
1789  break;
1790  }
1794  if (peer) Misbehaving(*peer, 100, message);
1795  return true;
1796  // Conflicting (but not necessarily invalid) data or different policy:
1798  // TODO: Handle this much more gracefully (10 DoS points is super arbitrary)
1799  if (peer) Misbehaving(*peer, 10, message);
1800  return true;
1803  break;
1804  }
1805  if (message != "") {
1806  LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1807  }
1808  return false;
1809 }
1810 
1811 bool PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
1812 {
1813  PeerRef peer{GetPeerRef(nodeid)};
1814  switch (state.GetResult()) {
1816  break;
1817  // The node is providing invalid data:
1819  if (peer) Misbehaving(*peer, 100, "");
1820  return true;
1821  // Conflicting (but not necessarily invalid) data or different policy:
1834  break;
1835  }
1836  return false;
1837 }
1838 
1839 bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1840 {
1842  if (m_chainman.ActiveChain().Contains(pindex)) return true;
1843  return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1844  (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1845  (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1846 }
1847 
1848 std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1849 {
1850  if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1851 
1852  // Ensure this peer exists and hasn't been disconnected
1853  PeerRef peer = GetPeerRef(peer_id);
1854  if (peer == nullptr) return "Peer does not exist";
1855 
1856  // Ignore pre-segwit peers
1857  if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
1858 
1859  LOCK(cs_main);
1860 
1861  // Forget about all prior requests
1862  RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1863 
1864  // Mark block as in-flight
1865  if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
1866 
1867  // Construct message to request the block
1868  const uint256& hash{block_index.GetBlockHash()};
1869  std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1870 
1871  // Send block request message to the peer
1872  bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1873  this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1874  return true;
1875  });
1876 
1877  if (!success) return "Peer not fully connected";
1878 
1879  LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
1880  hash.ToString(), peer_id);
1881  return std::nullopt;
1882 }
1883 
1884 std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1885  BanMan* banman, ChainstateManager& chainman,
1886  CTxMemPool& pool, Options opts)
1887 {
1888  return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, opts);
1889 }
1890 
1891 PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1892  BanMan* banman, ChainstateManager& chainman,
1893  CTxMemPool& pool, Options opts)
1894  : m_rng{opts.deterministic_rng},
1895  m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1896  m_chainparams(chainman.GetParams()),
1897  m_connman(connman),
1898  m_addrman(addrman),
1899  m_banman(banman),
1900  m_chainman(chainman),
1901  m_mempool(pool),
1902  m_opts{opts}
1903 {
1904  // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1905  // This argument can go away after Erlay support is complete.
1906  if (opts.reconcile_txs) {
1907  m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1908  }
1909 }
1910 
1911 void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1912 {
1913  // Stale tip checking and peer eviction are on two different timers, but we
1914  // don't want them to get out of sync due to drift in the scheduler, so we
1915  // combine them in one function and schedule at the quicker (peer-eviction)
1916  // timer.
1917  static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1918  scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1919 
1920  // schedule next run for 10-15 minutes in the future
1921  const std::chrono::milliseconds delta = 10min + GetRandMillis(5min);
1922  scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1923 }
1924 
1931 void PeerManagerImpl::BlockConnected(
1932  ChainstateRole role,
1933  const std::shared_ptr<const CBlock>& pblock,
1934  const CBlockIndex* pindex)
1935 {
1936  // Update this for all chainstate roles so that we don't mistakenly see peers
1937  // helping us do background IBD as having a stale tip.
1938  m_last_tip_update = GetTime<std::chrono::seconds>();
1939 
1940  // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1941  auto stalling_timeout = m_block_stalling_timeout.load();
1942  Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1943  if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1944  const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1945  if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1946  LogPrint(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
1947  }
1948  }
1949 
1950  // The following task can be skipped since we don't maintain a mempool for
1951  // the ibd/background chainstate.
1952  if (role == ChainstateRole::BACKGROUND) {
1953  return;
1954  }
1955  m_orphanage.EraseForBlock(*pblock);
1956 
1957  {
1958  LOCK(m_recent_confirmed_transactions_mutex);
1959  for (const auto& ptx : pblock->vtx) {
1960  m_recent_confirmed_transactions.insert(ptx->GetHash().ToUint256());
1961  if (ptx->HasWitness()) {
1962  m_recent_confirmed_transactions.insert(ptx->GetWitnessHash().ToUint256());
1963  }
1964  }
1965  }
1966  {
1967  LOCK(cs_main);
1968  for (const auto& ptx : pblock->vtx) {
1969  m_txrequest.ForgetTxHash(ptx->GetHash());
1970  m_txrequest.ForgetTxHash(ptx->GetWitnessHash());
1971  }
1972  }
1973 }
1974 
1975 void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
1976 {
1977  // To avoid relay problems with transactions that were previously
1978  // confirmed, clear our filter of recently confirmed transactions whenever
1979  // there's a reorg.
1980  // This means that in a 1-block reorg (where 1 block is disconnected and
1981  // then another block reconnected), our filter will drop to having only one
1982  // block's worth of transactions in it, but that should be fine, since
1983  // presumably the most common case of relaying a confirmed transaction
1984  // should be just after a new block containing it is found.
1985  LOCK(m_recent_confirmed_transactions_mutex);
1986  m_recent_confirmed_transactions.reset();
1987 }
1988 
1993 void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
1994 {
1995  auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock);
1996 
1997  LOCK(cs_main);
1998 
1999  if (pindex->nHeight <= m_highest_fast_announce)
2000  return;
2001  m_highest_fast_announce = pindex->nHeight;
2002 
2003  if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
2004 
2005  uint256 hashBlock(pblock->GetHash());
2006  const std::shared_future<CSerializedNetMsg> lazy_ser{
2007  std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
2008 
2009  {
2010  auto most_recent_block_txs = std::make_unique<std::map<uint256, CTransactionRef>>();
2011  for (const auto& tx : pblock->vtx) {
2012  most_recent_block_txs->emplace(tx->GetHash(), tx);
2013  most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2014  }
2015 
2016  LOCK(m_most_recent_block_mutex);
2017  m_most_recent_block_hash = hashBlock;
2018  m_most_recent_block = pblock;
2019  m_most_recent_compact_block = pcmpctblock;
2020  m_most_recent_block_txs = std::move(most_recent_block_txs);
2021  }
2022 
2023  m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2025 
2026  if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect)
2027  return;
2028  ProcessBlockAvailability(pnode->GetId());
2029  CNodeState &state = *State(pnode->GetId());
2030  // If the peer has, or we announced to them the previous block already,
2031  // but we don't think they have this one, go ahead and announce it
2032  if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2033 
2034  LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2035  hashBlock.ToString(), pnode->GetId());
2036 
2037  const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2038  PushMessage(*pnode, ser_cmpctblock.Copy());
2039  state.pindexBestHeaderSent = pindex;
2040  }
2041  });
2042 }
2043 
2048 void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2049 {
2050  SetBestHeight(pindexNew->nHeight);
2051  SetServiceFlagsIBDCache(!fInitialDownload);
2052 
2053  // Don't relay inventory during initial block download.
2054  if (fInitialDownload) return;
2055 
2056  // Find the hashes of all blocks that weren't previously in the best chain.
2057  std::vector<uint256> vHashes;
2058  const CBlockIndex *pindexToAnnounce = pindexNew;
2059  while (pindexToAnnounce != pindexFork) {
2060  vHashes.push_back(pindexToAnnounce->GetBlockHash());
2061  pindexToAnnounce = pindexToAnnounce->pprev;
2062  if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2063  // Limit announcements in case of a huge reorganization.
2064  // Rely on the peer's synchronization mechanism in that case.
2065  break;
2066  }
2067  }
2068 
2069  {
2070  LOCK(m_peer_mutex);
2071  for (auto& it : m_peer_map) {
2072  Peer& peer = *it.second;
2073  LOCK(peer.m_block_inv_mutex);
2074  for (const uint256& hash : reverse_iterate(vHashes)) {
2075  peer.m_blocks_for_headers_relay.push_back(hash);
2076  }
2077  }
2078  }
2079 
2080  m_connman.WakeMessageHandler();
2081 }
2082 
2087 void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
2088 {
2089  LOCK(cs_main);
2090 
2091  const uint256 hash(block.GetHash());
2092  std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2093 
2094  // If the block failed validation, we know where it came from and we're still connected
2095  // to that peer, maybe punish.
2096  if (state.IsInvalid() &&
2097  it != mapBlockSource.end() &&
2098  State(it->second.first)) {
2099  MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2100  }
2101  // Check that:
2102  // 1. The block is valid
2103  // 2. We're not in initial block download
2104  // 3. This is currently the best block we're aware of. We haven't updated
2105  // the tip yet so we have no way to check this directly here. Instead we
2106  // just check that there are currently no other blocks in flight.
2107  else if (state.IsValid() &&
2108  !m_chainman.IsInitialBlockDownload() &&
2109  mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2110  if (it != mapBlockSource.end()) {
2111  MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2112  }
2113  }
2114  if (it != mapBlockSource.end())
2115  mapBlockSource.erase(it);
2116 }
2117 
2119 //
2120 // Messages
2121 //
2122 
2123 
2124 bool PeerManagerImpl::AlreadyHaveTx(const GenTxid& gtxid)
2125 {
2126  if (m_chainman.ActiveChain().Tip()->GetBlockHash() != hashRecentRejectsChainTip) {
2127  // If the chain tip has changed previously rejected transactions
2128  // might be now valid, e.g. due to a nLockTime'd tx becoming valid,
2129  // or a double-spend. Reset the rejects filter and give those
2130  // txs a second chance.
2131  hashRecentRejectsChainTip = m_chainman.ActiveChain().Tip()->GetBlockHash();
2132  m_recent_rejects.reset();
2133  }
2134 
2135  const uint256& hash = gtxid.GetHash();
2136 
2137  if (m_orphanage.HaveTx(gtxid)) return true;
2138 
2139  {
2140  LOCK(m_recent_confirmed_transactions_mutex);
2141  if (m_recent_confirmed_transactions.contains(hash)) return true;
2142  }
2143 
2144  return m_recent_rejects.contains(hash) || m_mempool.exists(gtxid);
2145 }
2146 
2147 bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2148 {
2149  return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2150 }
2151 
2152 void PeerManagerImpl::SendPings()
2153 {
2154  LOCK(m_peer_mutex);
2155  for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2156 }
2157 
2158 void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
2159 {
2160  LOCK(m_peer_mutex);
2161  for(auto& it : m_peer_map) {
2162  Peer& peer = *it.second;
2163  auto tx_relay = peer.GetTxRelay();
2164  if (!tx_relay) continue;
2165 
2166  LOCK(tx_relay->m_tx_inventory_mutex);
2167  // Only queue transactions for announcement once the version handshake
2168  // is completed. The time of arrival for these transactions is
2169  // otherwise at risk of leaking to a spy, if the spy is able to
2170  // distinguish transactions received during the handshake from the rest
2171  // in the announcement.
2172  if (tx_relay->m_next_inv_send_time == 0s) continue;
2173 
2174  const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
2175  if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2176  tx_relay->m_tx_inventory_to_send.insert(hash);
2177  }
2178  };
2179 }
2180 
2181 void PeerManagerImpl::RelayAddress(NodeId originator,
2182  const CAddress& addr,
2183  bool fReachable)
2184 {
2185  // We choose the same nodes within a given 24h window (if the list of connected
2186  // nodes does not change) and we don't relay to nodes that already know an
2187  // address. So within 24h we will likely relay a given address once. This is to
2188  // prevent a peer from unjustly giving their address better propagation by sending
2189  // it to us repeatedly.
2190 
2191  if (!fReachable && !addr.IsRelayable()) return;
2192 
2193  // Relay to a limited number of other nodes
2194  // Use deterministic randomness to send to the same nodes for 24 hours
2195  // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2196  const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2197  const auto current_time{GetTime<std::chrono::seconds>()};
2198  // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2199  const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2201  .Write(hash_addr)
2202  .Write(time_addr)};
2203 
2204  // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2205  unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2206 
2207  std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2208  assert(nRelayNodes <= best.size());
2209 
2210  LOCK(m_peer_mutex);
2211 
2212  for (auto& [id, peer] : m_peer_map) {
2213  if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2214  uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2215  for (unsigned int i = 0; i < nRelayNodes; i++) {
2216  if (hashKey > best[i].first) {
2217  std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2218  best[i] = std::make_pair(hashKey, peer.get());
2219  break;
2220  }
2221  }
2222  }
2223  };
2224 
2225  for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2226  PushAddress(*best[i].second, addr);
2227  }
2228 }
2229 
2230 void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2231 {
2232  std::shared_ptr<const CBlock> a_recent_block;
2233  std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2234  {
2235  LOCK(m_most_recent_block_mutex);
2236  a_recent_block = m_most_recent_block;
2237  a_recent_compact_block = m_most_recent_compact_block;
2238  }
2239 
2240  bool need_activate_chain = false;
2241  {
2242  LOCK(cs_main);
2243  const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2244  if (pindex) {
2245  if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2246  pindex->IsValid(BLOCK_VALID_TREE)) {
2247  // If we have the block and all of its parents, but have not yet validated it,
2248  // we might be in the middle of connecting it (ie in the unlock of cs_main
2249  // before ActivateBestChain but after AcceptBlock).
2250  // In this case, we need to run ActivateBestChain prior to checking the relay
2251  // conditions below.
2252  need_activate_chain = true;
2253  }
2254  }
2255  } // release cs_main before calling ActivateBestChain
2256  if (need_activate_chain) {
2257  BlockValidationState state;
2258  if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2259  LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2260  }
2261  }
2262 
2263  LOCK(cs_main);
2264  const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2265  if (!pindex) {
2266  return;
2267  }
2268  if (!BlockRequestAllowed(pindex)) {
2269  LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2270  return;
2271  }
2272  // disconnect node in case we have reached the outbound limit for serving historical blocks
2273  if (m_connman.OutboundTargetReached(true) &&
2274  (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2275  !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2276  ) {
2277  LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId());
2278  pfrom.fDisconnect = true;
2279  return;
2280  }
2281  // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2282  if (!pfrom.HasPermission(NetPermissionFlags::NoBan) && (
2283  (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (m_chainman.ActiveChain().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2284  )) {
2285  LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, disconnect peer=%d\n", pfrom.GetId());
2286  //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2287  pfrom.fDisconnect = true;
2288  return;
2289  }
2290  // Pruned nodes may have deleted the block, so check whether
2291  // it's available before trying to send.
2292  if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2293  return;
2294  }
2295  std::shared_ptr<const CBlock> pblock;
2296  if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
2297  pblock = a_recent_block;
2298  } else if (inv.IsMsgWitnessBlk()) {
2299  // Fast-path: in this case it is possible to serve the block directly from disk,
2300  // as the network format matches the format on disk
2301  std::vector<uint8_t> block_data;
2302  if (!m_chainman.m_blockman.ReadRawBlockFromDisk(block_data, pindex->GetBlockPos())) {
2303  assert(!"cannot load block from disk");
2304  }
2305  MakeAndPushMessage(pfrom, NetMsgType::BLOCK, Span{block_data});
2306  // Don't set pblock as we've sent the block
2307  } else {
2308  // Send block from disk
2309  std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2310  if (!m_chainman.m_blockman.ReadBlockFromDisk(*pblockRead, *pindex)) {
2311  assert(!"cannot load block from disk");
2312  }
2313  pblock = pblockRead;
2314  }
2315  if (pblock) {
2316  if (inv.IsMsgBlk()) {
2317  MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2318  } else if (inv.IsMsgWitnessBlk()) {
2319  MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2320  } else if (inv.IsMsgFilteredBlk()) {
2321  bool sendMerkleBlock = false;
2322  CMerkleBlock merkleBlock;
2323  if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2324  LOCK(tx_relay->m_bloom_filter_mutex);
2325  if (tx_relay->m_bloom_filter) {
2326  sendMerkleBlock = true;
2327  merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2328  }
2329  }
2330  if (sendMerkleBlock) {
2331  MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2332  // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2333  // This avoids hurting performance by pointlessly requiring a round-trip
2334  // Note that there is currently no way for a node to request any single transactions we didn't send here -
2335  // they must either disconnect and retry or request the full block.
2336  // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2337  // however we MUST always provide at least what the remote peer needs
2338  typedef std::pair<unsigned int, uint256> PairType;
2339  for (PairType& pair : merkleBlock.vMatchedTxn)
2340  MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[pair.first]));
2341  }
2342  // else
2343  // no response
2344  } else if (inv.IsMsgCmpctBlk()) {
2345  // If a peer is asking for old blocks, we're almost guaranteed
2346  // they won't have a useful mempool to match against a compact block,
2347  // and we don't feel like constructing the object for them, so
2348  // instead we respond with the full, non-compact block.
2349  if (CanDirectFetch() && pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_CMPCTBLOCK_DEPTH) {
2350  if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
2351  MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2352  } else {
2353  CBlockHeaderAndShortTxIDs cmpctblock{*pblock};
2354  MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2355  }
2356  } else {
2357  MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2358  }
2359  }
2360  }
2361 
2362  {
2363  LOCK(peer.m_block_inv_mutex);
2364  // Trigger the peer node to send a getblocks request for the next batch of inventory
2365  if (inv.hash == peer.m_continuation_block) {
2366  // Send immediately. This must send even if redundant,
2367  // and we want it right after the last block so they don't
2368  // wait for other stuff first.
2369  std::vector<CInv> vInv;
2370  vInv.emplace_back(MSG_BLOCK, m_chainman.ActiveChain().Tip()->GetBlockHash());
2371  MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2372  peer.m_continuation_block.SetNull();
2373  }
2374  }
2375 }
2376 
2377 CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2378 {
2379  // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2380  auto txinfo = m_mempool.info_for_relay(gtxid, tx_relay.m_last_inv_sequence);
2381  if (txinfo.tx) {
2382  return std::move(txinfo.tx);
2383  }
2384 
2385  // Or it might be from the most recent block
2386  {
2387  LOCK(m_most_recent_block_mutex);
2388  if (m_most_recent_block_txs != nullptr) {
2389  auto it = m_most_recent_block_txs->find(gtxid.GetHash());
2390  if (it != m_most_recent_block_txs->end()) return it->second;
2391  }
2392  }
2393 
2394  return {};
2395 }
2396 
2397 void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2398 {
2400 
2401  auto tx_relay = peer.GetTxRelay();
2402 
2403  std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2404  std::vector<CInv> vNotFound;
2405 
2406  // Process as many TX items from the front of the getdata queue as
2407  // possible, since they're common and it's efficient to batch process
2408  // them.
2409  while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2410  if (interruptMsgProc) return;
2411  // The send buffer provides backpressure. If there's no space in
2412  // the buffer, pause processing until the next call.
2413  if (pfrom.fPauseSend) break;
2414 
2415  const CInv &inv = *it++;
2416 
2417  if (tx_relay == nullptr) {
2418  // Ignore GETDATA requests for transactions from block-relay-only
2419  // peers and peers that asked us not to announce transactions.
2420  continue;
2421  }
2422 
2423  CTransactionRef tx = FindTxForGetData(*tx_relay, ToGenTxid(inv));
2424  if (tx) {
2425  // WTX and WITNESS_TX imply we serialize with witness
2426  const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2427  MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2428  m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2429  } else {
2430  vNotFound.push_back(inv);
2431  }
2432  }
2433 
2434  // Only process one BLOCK item per call, since they're uncommon and can be
2435  // expensive to process.
2436  if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2437  const CInv &inv = *it++;
2438  if (inv.IsGenBlkMsg()) {
2439  ProcessGetBlockData(pfrom, peer, inv);
2440  }
2441  // else: If the first item on the queue is an unknown type, we erase it
2442  // and continue processing the queue on the next call.
2443  }
2444 
2445  peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2446 
2447  if (!vNotFound.empty()) {
2448  // Let the peer know that we didn't find what it asked for, so it doesn't
2449  // have to wait around forever.
2450  // SPV clients care about this message: it's needed when they are
2451  // recursively walking the dependencies of relevant unconfirmed
2452  // transactions. SPV clients want to do that because they want to know
2453  // about (and store and rebroadcast and risk analyze) the dependencies
2454  // of transactions relevant to them, without having to download the
2455  // entire memory pool.
2456  // Also, other nodes can use these messages to automatically request a
2457  // transaction from some other peer that announced it, and stop
2458  // waiting for us to respond.
2459  // In normal operation, we often send NOTFOUND messages for parents of
2460  // transactions that we relay; if a peer is missing a parent, they may
2461  // assume we have them and request the parents from us.
2462  MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2463  }
2464 }
2465 
2466 uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2467 {
2468  uint32_t nFetchFlags = 0;
2469  if (CanServeWitnesses(peer)) {
2470  nFetchFlags |= MSG_WITNESS_FLAG;
2471  }
2472  return nFetchFlags;
2473 }
2474 
2475 void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2476 {
2477  BlockTransactions resp(req);
2478  for (size_t i = 0; i < req.indexes.size(); i++) {
2479  if (req.indexes[i] >= block.vtx.size()) {
2480  Misbehaving(peer, 100, "getblocktxn with out-of-bounds tx indices");
2481  return;
2482  }
2483  resp.txn[i] = block.vtx[req.indexes[i]];
2484  }
2485 
2486  MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2487 }
2488 
2489 bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2490 {
2491  // Do these headers have proof-of-work matching what's claimed?
2492  if (!HasValidProofOfWork(headers, consensusParams)) {
2493  Misbehaving(peer, 100, "header with invalid proof of work");
2494  return false;
2495  }
2496 
2497  // Are these headers connected to each other?
2498  if (!CheckHeadersAreContinuous(headers)) {
2499  Misbehaving(peer, 20, "non-continuous headers sequence");
2500  return false;
2501  }
2502  return true;
2503 }
2504 
2505 arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2506 {
2507  arith_uint256 near_chaintip_work = 0;
2508  LOCK(cs_main);
2509  if (m_chainman.ActiveChain().Tip() != nullptr) {
2510  const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2511  // Use a 144 block buffer, so that we'll accept headers that fork from
2512  // near our tip.
2513  near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2514  }
2515  return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2516 }
2517 
2530 void PeerManagerImpl::HandleFewUnconnectingHeaders(CNode& pfrom, Peer& peer,
2531  const std::vector<CBlockHeader>& headers)
2532 {
2533  peer.m_num_unconnecting_headers_msgs++;
2534  // Try to fill in the missing headers.
2535  const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2536  if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2537  LogPrint(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d, m_num_unconnecting_headers_msgs=%d)\n",
2538  headers[0].GetHash().ToString(),
2539  headers[0].hashPrevBlock.ToString(),
2540  best_header->nHeight,
2541  pfrom.GetId(), peer.m_num_unconnecting_headers_msgs);
2542  }
2543 
2544  // Set hashLastUnknownBlock for this peer, so that if we
2545  // eventually get the headers - even from a different peer -
2546  // we can use this peer to download.
2547  WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2548 
2549  // The peer may just be broken, so periodically assign DoS points if this
2550  // condition persists.
2551  if (peer.m_num_unconnecting_headers_msgs % MAX_NUM_UNCONNECTING_HEADERS_MSGS == 0) {
2552  Misbehaving(peer, 20, strprintf("%d non-connecting headers", peer.m_num_unconnecting_headers_msgs));
2553  }
2554 }
2555 
2556 bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2557 {
2558  uint256 hashLastBlock;
2559  for (const CBlockHeader& header : headers) {
2560  if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2561  return false;
2562  }
2563  hashLastBlock = header.GetHash();
2564  }
2565  return true;
2566 }
2567 
2568 bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2569 {
2570  if (peer.m_headers_sync) {
2571  auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == MAX_HEADERS_RESULTS);
2572  if (result.request_more) {
2573  auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2574  // If we were instructed to ask for a locator, it should not be empty.
2575  Assume(!locator.vHave.empty());
2576  if (!locator.vHave.empty()) {
2577  // It should be impossible for the getheaders request to fail,
2578  // because we should have cleared the last getheaders timestamp
2579  // when processing the headers that triggered this call. But
2580  // it may be possible to bypass this via compactblock
2581  // processing, so check the result before logging just to be
2582  // safe.
2583  bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2584  if (sent_getheaders) {
2585  LogPrint(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2586  locator.vHave.front().ToString(), pfrom.GetId());
2587  } else {
2588  LogPrint(BCLog::NET, "error sending next getheaders (from %s) to continue sync with peer=%d\n",
2589  locator.vHave.front().ToString(), pfrom.GetId());
2590  }
2591  }
2592  }
2593 
2594  if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2595  peer.m_headers_sync.reset(nullptr);
2596 
2597  // Delete this peer's entry in m_headers_presync_stats.
2598  // If this is m_headers_presync_bestpeer, it will be replaced later
2599  // by the next peer that triggers the else{} branch below.
2600  LOCK(m_headers_presync_mutex);
2601  m_headers_presync_stats.erase(pfrom.GetId());
2602  } else {
2603  // Build statistics for this peer's sync.
2604  HeadersPresyncStats stats;
2605  stats.first = peer.m_headers_sync->GetPresyncWork();
2606  if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2607  stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2608  peer.m_headers_sync->GetPresyncTime()};
2609  }
2610 
2611  // Update statistics in stats.
2612  LOCK(m_headers_presync_mutex);
2613  m_headers_presync_stats[pfrom.GetId()] = stats;
2614  auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2615  bool best_updated = false;
2616  if (best_it == m_headers_presync_stats.end()) {
2617  // If the cached best peer is outdated, iterate over all remaining ones (including
2618  // newly updated one) to find the best one.
2619  NodeId peer_best{-1};
2620  const HeadersPresyncStats* stat_best{nullptr};
2621  for (const auto& [peer, stat] : m_headers_presync_stats) {
2622  if (!stat_best || stat > *stat_best) {
2623  peer_best = peer;
2624  stat_best = &stat;
2625  }
2626  }
2627  m_headers_presync_bestpeer = peer_best;
2628  best_updated = (peer_best == pfrom.GetId());
2629  } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2630  // pfrom was and remains the best peer, or pfrom just became best.
2631  m_headers_presync_bestpeer = pfrom.GetId();
2632  best_updated = true;
2633  }
2634  if (best_updated && stats.second.has_value()) {
2635  // If the best peer updated, and it is in its first phase, signal.
2636  m_headers_presync_should_signal = true;
2637  }
2638  }
2639 
2640  if (result.success) {
2641  // We only overwrite the headers passed in if processing was
2642  // successful.
2643  headers.swap(result.pow_validated_headers);
2644  }
2645 
2646  return result.success;
2647  }
2648  // Either we didn't have a sync in progress, or something went wrong
2649  // processing these headers, or we are returning headers to the caller to
2650  // process.
2651  return false;
2652 }
2653 
2654 bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2655 {
2656  // Calculate the total work on this chain.
2657  arith_uint256 total_work = chain_start_header->nChainWork + CalculateHeadersWork(headers);
2658 
2659  // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2660  // before we'll store it)
2661  arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2662 
2663  // Avoid DoS via low-difficulty-headers by only processing if the headers
2664  // are part of a chain with sufficient work.
2665  if (total_work < minimum_chain_work) {
2666  // Only try to sync with this peer if their headers message was full;
2667  // otherwise they don't have more headers after this so no point in
2668  // trying to sync their too-little-work chain.
2669  if (headers.size() == MAX_HEADERS_RESULTS) {
2670  // Note: we could advance to the last header in this set that is
2671  // known to us, rather than starting at the first header (which we
2672  // may already have); however this is unlikely to matter much since
2673  // ProcessHeadersMessage() already handles the case where all
2674  // headers in a received message are already known and are
2675  // ancestors of m_best_header or chainActive.Tip(), by skipping
2676  // this logic in that case. So even if the first header in this set
2677  // of headers is known, some header in this set must be new, so
2678  // advancing to the first unknown header would be a small effect.
2679  LOCK(peer.m_headers_sync_mutex);
2680  peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2681  chain_start_header, minimum_chain_work));
2682 
2683  // Now a HeadersSyncState object for tracking this synchronization
2684  // is created, process the headers using it as normal. Failures are
2685  // handled inside of IsContinuationOfLowWorkHeadersSync.
2686  (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2687  } else {
2688  LogPrint(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2689  }
2690 
2691  // The peer has not yet given us a chain that meets our work threshold,
2692  // so we want to prevent further processing of the headers in any case.
2693  headers = {};
2694  return true;
2695  }
2696 
2697  return false;
2698 }
2699 
2700 bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2701 {
2702  if (header == nullptr) {
2703  return false;
2704  } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2705  return true;
2706  } else if (m_chainman.ActiveChain().Contains(header)) {
2707  return true;
2708  }
2709  return false;
2710 }
2711 
2712 bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2713 {
2714  const auto current_time = NodeClock::now();
2715 
2716  // Only allow a new getheaders message to go out if we don't have a recent
2717  // one already in-flight
2718  if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2719  MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2720  peer.m_last_getheaders_timestamp = current_time;
2721  return true;
2722  }
2723  return false;
2724 }
2725 
2726 /*
2727  * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2728  * We require that the given tip have at least as much work as our tip, and for
2729  * our current tip to be "close to synced" (see CanDirectFetch()).
2730  */
2731 void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2732 {
2733  LOCK(cs_main);
2734  CNodeState *nodestate = State(pfrom.GetId());
2735 
2736  if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2737  std::vector<const CBlockIndex*> vToFetch;
2738  const CBlockIndex* pindexWalk{&last_header};
2739  // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2740  while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2741  if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2742  !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2743  (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2744  // We don't have this block, and it's not yet in flight.
2745  vToFetch.push_back(pindexWalk);
2746  }
2747  pindexWalk = pindexWalk->pprev;
2748  }
2749  // If pindexWalk still isn't on our main chain, we're looking at a
2750  // very large reorg at a time we think we're close to caught up to
2751  // the main chain -- this shouldn't really happen. Bail out on the
2752  // direct fetch and rely on parallel download instead.
2753  if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2754  LogPrint(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2755  last_header.GetBlockHash().ToString(),
2756  last_header.nHeight);
2757  } else {
2758  std::vector<CInv> vGetData;
2759  // Download as much as possible, from earliest to latest.
2760  for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) {
2761  if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2762  // Can't download any more from this peer
2763  break;
2764  }
2765  uint32_t nFetchFlags = GetFetchFlags(peer);
2766  vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2767  BlockRequested(pfrom.GetId(), *pindex);
2768  LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
2769  pindex->GetBlockHash().ToString(), pfrom.GetId());
2770  }
2771  if (vGetData.size() > 1) {
2772  LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2773  last_header.GetBlockHash().ToString(),
2774  last_header.nHeight);
2775  }
2776  if (vGetData.size() > 0) {
2777  if (!m_opts.ignore_incoming_txs &&
2778  nodestate->m_provides_cmpctblocks &&
2779  vGetData.size() == 1 &&
2780  mapBlocksInFlight.size() == 1 &&
2781  last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2782  // In any case, we want to download using a compact block, not a regular one
2783  vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2784  }
2785  MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2786  }
2787  }
2788  }
2789 }
2790 
2796 void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2797  const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2798 {
2799  if (peer.m_num_unconnecting_headers_msgs > 0) {
2800  LogPrint(BCLog::NET, "peer=%d: resetting m_num_unconnecting_headers_msgs (%d -> 0)\n", pfrom.GetId(), peer.m_num_unconnecting_headers_msgs);
2801  }
2802  peer.m_num_unconnecting_headers_msgs = 0;
2803 
2804  LOCK(cs_main);
2805  CNodeState *nodestate = State(pfrom.GetId());
2806 
2807  UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2808 
2809  // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2810  // because it is set in UpdateBlockAvailability. Some nullptr checks
2811  // are still present, however, as belt-and-suspenders.
2812 
2813  if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2814  nodestate->m_last_block_announcement = GetTime();
2815  }
2816 
2817  // If we're in IBD, we want outbound peers that will serve us a useful
2818  // chain. Disconnect peers that are on chains with insufficient work.
2819  if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2820  // If the peer has no more headers to give us, then we know we have
2821  // their tip.
2822  if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2823  // This peer has too little work on their headers chain to help
2824  // us sync -- disconnect if it is an outbound disconnection
2825  // candidate.
2826  // Note: We compare their tip to the minimum chain work (rather than
2827  // m_chainman.ActiveChain().Tip()) because we won't start block download
2828  // until we have a headers chain that has at least
2829  // the minimum chain work, even if a peer has a chain past our tip,
2830  // as an anti-DoS measure.
2831  if (pfrom.IsOutboundOrBlockRelayConn()) {
2832  LogPrintf("Disconnecting outbound peer %d -- headers chain has insufficient work\n", pfrom.GetId());
2833  pfrom.fDisconnect = true;
2834  }
2835  }
2836  }
2837 
2838  // If this is an outbound full-relay peer, check to see if we should protect
2839  // it from the bad/lagging chain logic.
2840  // Note that outbound block-relay peers are excluded from this protection, and
2841  // thus always subject to eviction under the bad/lagging chain logic.
2842  // See ChainSyncTimeoutState.
2843  if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2844  if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2845  LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2846  nodestate->m_chain_sync.m_protect = true;
2847  ++m_outbound_peers_with_protect_from_disconnect;
2848  }
2849  }
2850 }
2851 
2852 void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2853  std::vector<CBlockHeader>&& headers,
2854  bool via_compact_block)
2855 {
2856  size_t nCount = headers.size();
2857 
2858  if (nCount == 0) {
2859  // Nothing interesting. Stop asking this peers for more headers.
2860  // If we were in the middle of headers sync, receiving an empty headers
2861  // message suggests that the peer suddenly has nothing to give us
2862  // (perhaps it reorged to our chain). Clear download state for this peer.
2863  LOCK(peer.m_headers_sync_mutex);
2864  if (peer.m_headers_sync) {
2865  peer.m_headers_sync.reset(nullptr);
2866  LOCK(m_headers_presync_mutex);
2867  m_headers_presync_stats.erase(pfrom.GetId());
2868  }
2869  return;
2870  }
2871 
2872  // Before we do any processing, make sure these pass basic sanity checks.
2873  // We'll rely on headers having valid proof-of-work further down, as an
2874  // anti-DoS criteria (note: this check is required before passing any
2875  // headers into HeadersSyncState).
2876  if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2877  // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2878  // just return. (Note that even if a header is announced via compact
2879  // block, the header itself should be valid, so this type of error can
2880  // always be punished.)
2881  return;
2882  }
2883 
2884  const CBlockIndex *pindexLast = nullptr;
2885 
2886  // We'll set already_validated_work to true if these headers are
2887  // successfully processed as part of a low-work headers sync in progress
2888  // (either in PRESYNC or REDOWNLOAD phase).
2889  // If true, this will mean that any headers returned to us (ie during
2890  // REDOWNLOAD) can be validated without further anti-DoS checks.
2891  bool already_validated_work = false;
2892 
2893  // If we're in the middle of headers sync, let it do its magic.
2894  bool have_headers_sync = false;
2895  {
2896  LOCK(peer.m_headers_sync_mutex);
2897 
2898  already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2899 
2900  // The headers we passed in may have been:
2901  // - untouched, perhaps if no headers-sync was in progress, or some
2902  // failure occurred
2903  // - erased, such as if the headers were successfully processed and no
2904  // additional headers processing needs to take place (such as if we
2905  // are still in PRESYNC)
2906  // - replaced with headers that are now ready for validation, such as
2907  // during the REDOWNLOAD phase of a low-work headers sync.
2908  // So just check whether we still have headers that we need to process,
2909  // or not.
2910  if (headers.empty()) {
2911  return;
2912  }
2913 
2914  have_headers_sync = !!peer.m_headers_sync;
2915  }
2916 
2917  // Do these headers connect to something in our block index?
2918  const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2919  bool headers_connect_blockindex{chain_start_header != nullptr};
2920 
2921  if (!headers_connect_blockindex) {
2922  if (nCount <= MAX_BLOCKS_TO_ANNOUNCE) {
2923  // If this looks like it could be a BIP 130 block announcement, use
2924  // special logic for handling headers that don't connect, as this
2925  // could be benign.
2926  HandleFewUnconnectingHeaders(pfrom, peer, headers);
2927  } else {
2928  Misbehaving(peer, 10, "invalid header received");
2929  }
2930  return;
2931  }
2932 
2933  // If the headers we received are already in memory and an ancestor of
2934  // m_best_header or our tip, skip anti-DoS checks. These headers will not
2935  // use any more memory (and we are not leaking information that could be
2936  // used to fingerprint us).
2937  const CBlockIndex *last_received_header{nullptr};
2938  {
2939  LOCK(cs_main);
2940  last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2941  if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2942  already_validated_work = true;
2943  }
2944  }
2945 
2946  // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2947  // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2948  // on startup).
2950  already_validated_work = true;
2951  }
2952 
2953  // At this point, the headers connect to something in our block index.
2954  // Do anti-DoS checks to determine if we should process or store for later
2955  // processing.
2956  if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
2957  chain_start_header, headers)) {
2958  // If we successfully started a low-work headers sync, then there
2959  // should be no headers to process any further.
2960  Assume(headers.empty());
2961  return;
2962  }
2963 
2964  // At this point, we have a set of headers with sufficient work on them
2965  // which can be processed.
2966 
2967  // If we don't have the last header, then this peer will have given us
2968  // something new (if these headers are valid).
2969  bool received_new_header{last_received_header == nullptr};
2970 
2971  // Now process all the headers.
2972  BlockValidationState state;
2973  if (!m_chainman.ProcessNewBlockHeaders(headers, /*min_pow_checked=*/true, state, &pindexLast)) {
2974  if (state.IsInvalid()) {
2975  MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2976  return;
2977  }
2978  }
2979  assert(pindexLast);
2980 
2981  // Consider fetching more headers if we are not using our headers-sync mechanism.
2982  if (nCount == MAX_HEADERS_RESULTS && !have_headers_sync) {
2983  // Headers message had its maximum size; the peer may have more headers.
2984  if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
2985  LogPrint(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
2986  pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2987  }
2988  }
2989 
2990  UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == MAX_HEADERS_RESULTS);
2991 
2992  // Consider immediately downloading blocks.
2993  HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2994 
2995  return;
2996 }
2997 
2998 bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
2999 {
3000  AssertLockHeld(g_msgproc_mutex);
3001  LOCK(cs_main);
3002 
3003  CTransactionRef porphanTx = nullptr;
3004 
3005  while (CTransactionRef porphanTx = m_orphanage.GetTxToReconsider(peer.m_id)) {
3006  const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3007  const TxValidationState& state = result.m_state;
3008  const Txid& orphanHash = porphanTx->GetHash();
3009  const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3010 
3012  LogPrint(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3013  LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3014  peer.m_id,
3015  orphanHash.ToString(),
3016  orphan_wtxid.ToString(),
3017  m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3018  RelayTransaction(orphanHash, porphanTx->GetWitnessHash());
3019  m_orphanage.AddChildrenToWorkSet(*porphanTx);
3020  m_orphanage.EraseTx(orphanHash);
3021  for (const CTransactionRef& removedTx : result.m_replaced_transactions.value()) {
3022  AddToCompactExtraTransactions(removedTx);
3023  }
3024  return true;
3025  } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3026  if (state.IsInvalid()) {
3027  LogPrint(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3028  orphanHash.ToString(),
3029  orphan_wtxid.ToString(),
3030  peer.m_id,
3031  state.ToString());
3032  LogPrint(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
3033  orphanHash.ToString(),
3034  orphan_wtxid.ToString(),
3035  peer.m_id,
3036  state.ToString());
3037  // Maybe punish peer that gave us an invalid orphan tx
3038  MaybePunishNodeForTx(peer.m_id, state);
3039  }
3040  // Has inputs but not accepted to mempool
3041  // Probably non-standard or insufficient fee
3042  LogPrint(BCLog::TXPACKAGES, " removed orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3044  // We can add the wtxid of this transaction to our reject filter.
3045  // Do not add txids of witness transactions or witness-stripped
3046  // transactions to the filter, as they can have been malleated;
3047  // adding such txids to the reject filter would potentially
3048  // interfere with relay of valid transactions from peers that
3049  // do not support wtxid-based relay. See
3050  // https://github.com/bitcoin/bitcoin/issues/8279 for details.
3051  // We can remove this restriction (and always add wtxids to
3052  // the filter even for witness stripped transactions) once
3053  // wtxid-based relay is broadly deployed.
3054  // See also comments in https://github.com/bitcoin/bitcoin/pull/18044#discussion_r443419034
3055  // for concerns around weakening security of unupgraded nodes
3056  // if we start doing this too early.
3057  m_recent_rejects.insert(porphanTx->GetWitnessHash().ToUint256());
3058  // If the transaction failed for TX_INPUTS_NOT_STANDARD,
3059  // then we know that the witness was irrelevant to the policy
3060  // failure, since this check depends only on the txid
3061  // (the scriptPubKey being spent is covered by the txid).
3062  // Add the txid to the reject filter to prevent repeated
3063  // processing of this transaction in the event that child
3064  // transactions are later received (resulting in
3065  // parent-fetching by txid via the orphan-handling logic).
3066  if (state.GetResult() == TxValidationResult::TX_INPUTS_NOT_STANDARD && porphanTx->HasWitness()) {
3067  // We only add the txid if it differs from the wtxid, to
3068  // avoid wasting entries in the rolling bloom filter.
3069  m_recent_rejects.insert(porphanTx->GetHash().ToUint256());
3070  }
3071  }
3072  m_orphanage.EraseTx(orphanHash);
3073  return true;
3074  }
3075  }
3076 
3077  return false;
3078 }
3079 
3080 bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3081  BlockFilterType filter_type, uint32_t start_height,
3082  const uint256& stop_hash, uint32_t max_height_diff,
3083  const CBlockIndex*& stop_index,
3084  BlockFilterIndex*& filter_index)
3085 {
3086  const bool supported_filter_type =
3087  (filter_type == BlockFilterType::BASIC &&
3088  (peer.m_our_services & NODE_COMPACT_FILTERS));
3089  if (!supported_filter_type) {
3090  LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n",
3091  node.GetId(), static_cast<uint8_t>(filter_type));
3092  node.fDisconnect = true;
3093  return false;
3094  }
3095 
3096  {
3097  LOCK(cs_main);
3098  stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3099 
3100  // Check that the stop block exists and the peer would be allowed to fetch it.
3101  if (!stop_index || !BlockRequestAllowed(stop_index)) {
3102  LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n",
3103  node.GetId(), stop_hash.ToString());
3104  node.fDisconnect = true;
3105  return false;
3106  }
3107  }
3108 
3109  uint32_t stop_height = stop_index->nHeight;
3110  if (start_height > stop_height) {
3111  LogPrint(BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with "
3112  "start height %d and stop height %d\n",
3113  node.GetId(), start_height, stop_height);
3114  node.fDisconnect = true;
3115  return false;
3116  }
3117  if (stop_height - start_height >= max_height_diff) {
3118  LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n",
3119  node.GetId(), stop_height - start_height + 1, max_height_diff);
3120  node.fDisconnect = true;
3121  return false;
3122  }
3123 
3124  filter_index = GetBlockFilterIndex(filter_type);
3125  if (!filter_index) {
3126  LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3127  return false;
3128  }
3129 
3130  return true;
3131 }
3132 
3133 void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3134 {
3135  uint8_t filter_type_ser;
3136  uint32_t start_height;
3137  uint256 stop_hash;
3138 
3139  vRecv >> filter_type_ser >> start_height >> stop_hash;
3140 
3141  const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3142 
3143  const CBlockIndex* stop_index;
3144  BlockFilterIndex* filter_index;
3145  if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3146  MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3147  return;
3148  }
3149 
3150  std::vector<BlockFilter> filters;
3151  if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3152  LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3153  BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3154  return;
3155  }
3156 
3157  for (const auto& filter : filters) {
3158  MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3159  }
3160 }
3161 
3162 void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3163 {
3164  uint8_t filter_type_ser;
3165  uint32_t start_height;
3166  uint256 stop_hash;
3167 
3168  vRecv >> filter_type_ser >> start_height >> stop_hash;
3169 
3170  const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3171 
3172  const CBlockIndex* stop_index;
3173  BlockFilterIndex* filter_index;
3174  if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3175  MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3176  return;
3177  }
3178 
3179  uint256 prev_header;
3180  if (start_height > 0) {
3181  const CBlockIndex* const prev_block =
3182  stop_index->GetAncestor(static_cast<int>(start_height - 1));
3183  if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3184  LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3185  BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3186  return;
3187  }
3188  }
3189 
3190  std::vector<uint256> filter_hashes;
3191  if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3192  LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3193  BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3194  return;
3195  }
3196 
3197  MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3198  filter_type_ser,
3199  stop_index->GetBlockHash(),
3200  prev_header,
3201  filter_hashes);
3202 }
3203 
3204 void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3205 {
3206  uint8_t filter_type_ser;
3207  uint256 stop_hash;
3208 
3209  vRecv >> filter_type_ser >> stop_hash;
3210 
3211  const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3212 
3213  const CBlockIndex* stop_index;
3214  BlockFilterIndex* filter_index;
3215  if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3216  /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3217  stop_index, filter_index)) {
3218  return;
3219  }
3220 
3221  std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3222 
3223  // Populate headers.
3224  const CBlockIndex* block_index = stop_index;
3225  for (int i = headers.size() - 1; i >= 0; i--) {
3226  int height = (i + 1) * CFCHECKPT_INTERVAL;
3227  block_index = block_index->GetAncestor(height);
3228 
3229  if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3230  LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3231  BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3232  return;
3233  }
3234  }
3235 
3236  MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3237  filter_type_ser,
3238  stop_index->GetBlockHash(),
3239  headers);
3240 }
3241 
3242 void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3243 {
3244  bool new_block{false};
3245  m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3246  if (new_block) {
3247  node.m_last_block_time = GetTime<std::chrono::seconds>();
3248  // In case this block came from a different peer than we requested
3249  // from, we can erase the block request now anyway (as we just stored
3250  // this block to disk).
3251  LOCK(cs_main);
3252  RemoveBlockRequest(block->GetHash(), std::nullopt);
3253  } else {
3254  LOCK(cs_main);
3255  mapBlockSource.erase(block->GetHash());
3256  }
3257 }
3258 
3259 void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3260 {
3261  std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3262  bool fBlockRead{false};
3263  {
3264  LOCK(cs_main);
3265 
3266  auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3267  size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3268  bool requested_block_from_this_peer{false};
3269 
3270  // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3271  bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3272 
3273  while (range_flight.first != range_flight.second) {
3274  auto [node_id, block_it] = range_flight.first->second;
3275  if (node_id == pfrom.GetId() && block_it->partialBlock) {
3276  requested_block_from_this_peer = true;
3277  break;
3278  }
3279  range_flight.first++;
3280  }
3281 
3282  if (!requested_block_from_this_peer) {
3283  LogPrint(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3284  return;
3285  }
3286 
3287  PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3288  ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn);
3289  if (status == READ_STATUS_INVALID) {
3290  RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3291  Misbehaving(peer, 100, "invalid compact block/non-matching block transactions");
3292  return;
3293  } else if (status == READ_STATUS_FAILED) {
3294  if (first_in_flight) {
3295  // Might have collided, fall back to getdata now :(
3296  std::vector<CInv> invs;
3297  invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3298  MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3299  } else {
3300  RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3301  LogPrint(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3302  return;
3303  }
3304  } else {
3305  // Block is either okay, or possibly we received
3306  // READ_STATUS_CHECKBLOCK_FAILED.
3307  // Note that CheckBlock can only fail for one of a few reasons:
3308  // 1. bad-proof-of-work (impossible here, because we've already
3309  // accepted the header)
3310  // 2. merkleroot doesn't match the transactions given (already
3311  // caught in FillBlock with READ_STATUS_FAILED, so
3312  // impossible here)
3313  // 3. the block is otherwise invalid (eg invalid coinbase,
3314  // block is too big, too many legacy sigops, etc).
3315  // So if CheckBlock failed, #3 is the only possibility.
3316  // Under BIP 152, we don't discourage the peer unless proof of work is
3317  // invalid (we don't require all the stateless checks to have
3318  // been run). This is handled below, so just treat this as
3319  // though the block was successfully read, and rely on the
3320  // handling in ProcessNewBlock to ensure the block index is
3321  // updated, etc.
3322  RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3323  fBlockRead = true;
3324  // mapBlockSource is used for potentially punishing peers and
3325  // updating which peers send us compact blocks, so the race
3326  // between here and cs_main in ProcessNewBlock is fine.
3327  // BIP 152 permits peers to relay compact blocks after validating
3328  // the header only; we should not punish peers if the block turns
3329  // out to be invalid.
3330  mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3331  }
3332  } // Don't hold cs_main when we call into ProcessNewBlock
3333  if (fBlockRead) {
3334  // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3335  // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3336  // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3337  // disk-space attacks), but this should be safe due to the
3338  // protections in the compact block handler -- see related comment
3339  // in compact block optimistic reconstruction handling.
3340  ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3341  }
3342  return;
3343 }
3344 
3345 void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3346  const std::chrono::microseconds time_received,
3347  const std::atomic<bool>& interruptMsgProc)
3348 {
3349  AssertLockHeld(g_msgproc_mutex);
3350 
3351  LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3352 
3353  PeerRef peer = GetPeerRef(pfrom.GetId());
3354  if (peer == nullptr) return;
3355 
3356  if (msg_type == NetMsgType::VERSION) {
3357  if (pfrom.nVersion != 0) {
3358  LogPrint(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3359  return;
3360  }
3361 
3362  int64_t nTime;
3363  CService addrMe;
3364  uint64_t nNonce = 1;
3365  ServiceFlags nServices;
3366  int nVersion;
3367  std::string cleanSubVer;
3368  int starting_height = -1;
3369  bool fRelay = true;
3370 
3371  vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3372  if (nTime < 0) {
3373  nTime = 0;
3374  }
3375  vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3376  vRecv >> CNetAddr::V1(addrMe);
3377  if (!pfrom.IsInboundConn())
3378  {
3379  m_addrman.SetServices(pfrom.addr, nServices);
3380  }
3381  if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3382  {
3383  LogPrint(BCLog::NET, "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices));
3384  pfrom.fDisconnect = true;
3385  return;
3386  }
3387 
3388  if (nVersion < MIN_PEER_PROTO_VERSION) {
3389  // disconnect from peers older than this proto version
3390  LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion);
3391  pfrom.fDisconnect = true;
3392  return;
3393  }
3394 
3395  if (!vRecv.empty()) {
3396  // The version message includes information about the sending node which we don't use:
3397  // - 8 bytes (service bits)
3398  // - 16 bytes (ipv6 address)
3399  // - 2 bytes (port)
3400  vRecv.ignore(26);
3401  vRecv >> nNonce;
3402  }
3403  if (!vRecv.empty()) {
3404  std::string strSubVer;
3405  vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3406  cleanSubVer = SanitizeString(strSubVer);
3407  }
3408  if (!vRecv.empty()) {
3409  vRecv >> starting_height;
3410  }
3411  if (!vRecv.empty())
3412  vRecv >> fRelay;
3413  // Disconnect if we connected to ourself
3414  if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3415  {
3416  LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3417  pfrom.fDisconnect = true;
3418  return;
3419  }
3420 
3421  if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3422  {
3423  SeenLocal(addrMe);
3424  }
3425 
3426  // Inbound peers send us their version message when they connect.
3427  // We send our version message in response.
3428  if (pfrom.IsInboundConn()) {
3429  PushNodeVersion(pfrom, *peer);
3430  }
3431 
3432  // Change version
3433  const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3434  pfrom.SetCommonVersion(greatest_common_version);
3435  pfrom.nVersion = nVersion;
3436 
3437  if (greatest_common_version >= WTXID_RELAY_VERSION) {
3438  MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3439  }
3440 
3441  // Signal ADDRv2 support (BIP155).
3442  if (greatest_common_version >= 70016) {
3443  // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3444  // implementations reject messages they don't know. As a courtesy, don't send
3445  // it to nodes with a version before 70016, as no software is known to support
3446  // BIP155 that doesn't announce at least that protocol version number.
3447  MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3448  }
3449 
3451  peer->m_their_services = nServices;
3452  pfrom.SetAddrLocal(addrMe);
3453  {
3454  LOCK(pfrom.m_subver_mutex);
3455  pfrom.cleanSubVer = cleanSubVer;
3456  }
3457  peer->m_starting_height = starting_height;
3458 
3459  // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3460  // - this isn't an outbound block-relay-only connection, and
3461  // - this isn't an outbound feeler connection, and
3462  // - fRelay=true (the peer wishes to receive transaction announcements)
3463  // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3464  // the peer may turn on transaction relay later.
3465  if (!pfrom.IsBlockOnlyConn() &&
3466  !pfrom.IsFeelerConn() &&
3467  (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3468  auto* const tx_relay = peer->SetTxRelay();
3469  {
3470  LOCK(tx_relay->m_bloom_filter_mutex);
3471  tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3472  }
3473  if (fRelay) pfrom.m_relays_txs = true;
3474  }
3475 
3476  if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3477  // Per BIP-330, we announce txreconciliation support if:
3478  // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3479  // - transaction relay is supported per the peer's VERSION message
3480  // - this is not a block-relay-only connection and not a feeler
3481  // - this is not an addr fetch connection;
3482  // - we are not in -blocksonly mode.
3483  const auto* tx_relay = peer->GetTxRelay();
3484  if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3485  !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3486  const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3487  MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3488  TXRECONCILIATION_VERSION, recon_salt);
3489  }
3490  }
3491 
3492  MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3493 
3494  // Potentially mark this peer as a preferred download peer.
3495  {
3496  LOCK(cs_main);
3497  CNodeState* state = State(pfrom.GetId());
3498  state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3499  m_num_preferred_download_peers += state->fPreferredDownload;
3500  }
3501 
3502  // Attempt to initialize address relay for outbound peers and use result
3503  // to decide whether to send GETADDR, so that we don't send it to
3504  // inbound or outbound block-relay-only peers.
3505  bool send_getaddr{false};
3506  if (!pfrom.IsInboundConn()) {
3507  send_getaddr = SetupAddressRelay(pfrom, *peer);
3508  }
3509  if (send_getaddr) {
3510  // Do a one-time address fetch to help populate/update our addrman.
3511  // If we're starting up for the first time, our addrman may be pretty
3512  // empty, so this mechanism is important to help us connect to the network.
3513  // We skip this for block-relay-only peers. We want to avoid
3514  // potentially leaking addr information and we do not want to
3515  // indicate to the peer that we will participate in addr relay.
3516  MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3517  peer->m_getaddr_sent = true;
3518  // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3519  // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3520  peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3521  }
3522 
3523  if (!pfrom.IsInboundConn()) {
3524  // For non-inbound connections, we update the addrman to record
3525  // connection success so that addrman will have an up-to-date
3526  // notion of which peers are online and available.
3527  //
3528  // While we strive to not leak information about block-relay-only
3529  // connections via the addrman, not moving an address to the tried
3530  // table is also potentially detrimental because new-table entries
3531  // are subject to eviction in the event of addrman collisions. We
3532  // mitigate the information-leak by never calling
3533  // AddrMan::Connected() on block-relay-only peers; see
3534  // FinalizeNode().
3535  //
3536  // This moves an address from New to Tried table in Addrman,
3537  // resolves tried-table collisions, etc.
3538  m_addrman.Good(pfrom.addr);
3539  }
3540 
3541  std::string remoteAddr;
3542  if (fLogIPs)
3543  remoteAddr = ", peeraddr=" + pfrom.addr.ToStringAddrPort();
3544 
3545  const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3546  LogPrint(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3547  cleanSubVer, pfrom.nVersion,
3548  peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3549  remoteAddr, (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3550 
3551  int64_t nTimeOffset = nTime - GetTime();
3552  pfrom.nTimeOffset = nTimeOffset;
3553  if (!pfrom.IsInboundConn()) {
3554  // Don't use timedata samples from inbound peers to make it
3555  // harder for others to tamper with our adjusted time.
3556  AddTimeData(pfrom.addr, nTimeOffset);
3557  }
3558 
3559  // If the peer is old enough to have the old alert system, send it the final alert.
3560  if (greatest_common_version <= 70012) {
3561  const auto finalAlert{ParseHex("60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50")};
3562  MakeAndPushMessage(pfrom, "alert", Span{finalAlert});
3563  }
3564 
3565  // Feeler connections exist only to verify if address is online.
3566  if (pfrom.IsFeelerConn()) {
3567  LogPrint(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId());
3568  pfrom.fDisconnect = true;
3569  }
3570  return;
3571  }
3572 
3573  if (pfrom.nVersion == 0) {
3574  // Must have a version message before anything else
3575  LogPrint(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3576  return;
3577  }
3578 
3579  if (msg_type == NetMsgType::VERACK) {
3580  if (pfrom.fSuccessfullyConnected) {
3581  LogPrint(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3582  return;
3583  }
3584 
3585  // Log successful connections unconditionally for outbound, but not for inbound as those
3586  // can be triggered by an attacker at high rate.
3588  const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3589  LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
3590  pfrom.ConnectionTypeAsString(),
3591  TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3592  pfrom.nVersion.load(), peer->m_starting_height,
3593  pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : ""),
3594  (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3595  }
3596 
3597  if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) {
3598  // Tell our peer we are willing to provide version 2 cmpctblocks.
3599  // However, we do not request new block announcements using
3600  // cmpctblock messages.
3601  // We send this to non-NODE NETWORK peers as well, because
3602  // they may wish to request compact blocks from us
3603  MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3604  }
3605 
3606  if (m_txreconciliation) {
3607  if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3608  // We could have optimistically pre-registered/registered the peer. In that case,
3609  // we should forget about the reconciliation state here if this wasn't followed
3610  // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3611  m_txreconciliation->ForgetPeer(pfrom.GetId());
3612  }
3613  }
3614 
3615  if (auto tx_relay = peer->GetTxRelay()) {
3616  // `TxRelay::m_tx_inventory_to_send` must be empty before the
3617  // version handshake is completed as
3618  // `TxRelay::m_next_inv_send_time` is first initialised in
3619  // `SendMessages` after the verack is received. Any transactions
3620  // received during the version handshake would otherwise
3621  // immediately be advertised without random delay, potentially
3622  // leaking the time of arrival to a spy.
3623  Assume(WITH_LOCK(
3624  tx_relay->m_tx_inventory_mutex,
3625  return tx_relay->m_tx_inventory_to_send.empty() &&
3626  tx_relay->m_next_inv_send_time == 0s));
3627  }
3628 
3629  pfrom.fSuccessfullyConnected = true;
3630  return;
3631  }
3632 
3633  if (msg_type == NetMsgType::SENDHEADERS) {
3634  peer->m_prefers_headers = true;
3635  return;
3636  }
3637 
3638  if (msg_type == NetMsgType::SENDCMPCT) {
3639  bool sendcmpct_hb{false};
3640  uint64_t sendcmpct_version{0};
3641  vRecv >> sendcmpct_hb >> sendcmpct_version;
3642 
3643  // Only support compact block relay with witnesses
3644  if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3645 
3646  LOCK(cs_main);
3647  CNodeState* nodestate = State(pfrom.GetId());
3648  nodestate->m_provides_cmpctblocks = true;
3649  nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3650  // save whether peer selects us as BIP152 high-bandwidth peer
3651  // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3652  pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3653  return;
3654  }
3655 
3656  // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3657  // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3658  if (msg_type == NetMsgType::WTXIDRELAY) {
3659  if (pfrom.fSuccessfullyConnected) {
3660  // Disconnect peers that send a wtxidrelay message after VERACK.
3661  LogPrint(BCLog::NET, "wtxidrelay received after verack from peer=%d; disconnecting\n", pfrom.GetId());
3662  pfrom.fDisconnect = true;
3663  return;
3664  }
3665  if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3666  if (!peer->m_wtxid_relay) {
3667  peer->m_wtxid_relay = true;
3668  m_wtxid_relay_peers++;
3669  } else {
3670  LogPrint(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3671  }
3672  } else {
3673  LogPrint(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3674  }
3675  return;
3676  }
3677 
3678  // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3679  // between VERSION and VERACK.
3680  if (msg_type == NetMsgType::SENDADDRV2) {
3681  if (pfrom.fSuccessfullyConnected) {
3682  // Disconnect peers that send a SENDADDRV2 message after VERACK.
3683  LogPrint(BCLog::NET, "sendaddrv2 received after verack from peer=%d; disconnecting\n", pfrom.GetId());
3684  pfrom.fDisconnect = true;
3685  return;
3686  }
3687  peer->m_wants_addrv2 = true;
3688  return;
3689  }
3690 
3691  // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3692  // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3693  // from switching announcement protocols after the connection is up.
3694  if (msg_type == NetMsgType::SENDTXRCNCL) {
3695  if (!m_txreconciliation) {
3696  LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3697  return;
3698  }
3699 
3700  if (pfrom.fSuccessfullyConnected) {
3701  LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received after verack from peer=%d; disconnecting\n", pfrom.GetId());
3702  pfrom.fDisconnect = true;
3703  return;
3704  }
3705 
3706  // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3707  if (RejectIncomingTxs(pfrom)) {
3708  LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d to which we indicated no tx relay; disconnecting\n", pfrom.GetId());
3709  pfrom.fDisconnect = true;
3710  return;
3711  }
3712 
3713  // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3714  // This flag might also be false in other cases, but the RejectIncomingTxs check above
3715  // eliminates them, so that this flag fully represents what we are looking for.
3716  const auto* tx_relay = peer->GetTxRelay();
3717  if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3718  LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d which indicated no tx relay to us; disconnecting\n", pfrom.GetId());
3719  pfrom.fDisconnect = true;
3720  return;
3721  }
3722 
3723  uint32_t peer_txreconcl_version;
3724  uint64_t remote_salt;
3725  vRecv >> peer_txreconcl_version >> remote_salt;
3726 
3727  const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3728  peer_txreconcl_version, remote_salt);
3729  switch (result) {
3731  LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3732  break;
3734  break;
3736  LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d (sendtxrcncl received from already registered peer); disconnecting\n", pfrom.GetId());
3737  pfrom.fDisconnect = true;
3738  return;
3740  LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d; disconnecting\n", pfrom.GetId());
3741  pfrom.fDisconnect = true;
3742  return;
3743  }
3744  return;
3745  }
3746 
3747  if (!pfrom.fSuccessfullyConnected) {
3748  LogPrint(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3749  return;
3750  }
3751 
3752  if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3753  const auto ser_params{
3754  msg_type == NetMsgType::ADDRV2 ?
3755  // Set V2 param so that the CNetAddr and CAddress
3756  // unserialize methods know that an address in v2 format is coming.
3759  };
3760 
3761  std::vector<CAddress> vAddr;
3762 
3763  vRecv >> ser_params(vAddr);
3764 
3765  if (!SetupAddressRelay(pfrom, *peer)) {
3766  LogPrint(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
3767  return;
3768  }
3769 
3770  if (vAddr.size() > MAX_ADDR_TO_SEND)
3771  {
3772  Misbehaving(*peer, 20, strprintf("%s message size = %u", msg_type, vAddr.size()));
3773  return;
3774  }
3775 
3776  // Store the new addresses
3777  std::vector<CAddress> vAddrOk;
3778  const auto current_a_time{Now<NodeSeconds>()};
3779 
3780  // Update/increment addr rate limiting bucket.
3781  const auto current_time{GetTime<std::chrono::microseconds>()};
3782  if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3783  // Don't increment bucket if it's already full
3784  const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
3785  const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3786  peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3787  }
3788  peer->m_addr_token_timestamp = current_time;
3789 
3790  const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3791  uint64_t num_proc = 0;
3792  uint64_t num_rate_limit = 0;
3793  Shuffle(vAddr.begin(), vAddr.end(), m_rng);
3794  for (CAddress& addr : vAddr)
3795  {
3796  if (interruptMsgProc)
3797  return;
3798 
3799  // Apply rate limiting.
3800  if (peer->m_addr_token_bucket < 1.0) {
3801  if (rate_limited) {
3802  ++num_rate_limit;
3803  continue;
3804  }
3805  } else {
3806  peer->m_addr_token_bucket -= 1.0;
3807  }
3808  // We only bother storing full nodes, though this may include
3809  // things which we would not make an outbound connection to, in
3810  // part because we may make feeler connections to them.
3812  continue;
3813 
3814  if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
3815  addr.nTime = current_a_time - 5 * 24h;
3816  }
3817  AddAddressKnown(*peer, addr);
3818  if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
3819  // Do not process banned/discouraged addresses beyond remembering we received them
3820  continue;
3821  }
3822  ++num_proc;
3823  const bool reachable{g_reachable_nets.Contains(addr)};
3824  if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
3825  // Relay to a limited number of other nodes
3826  RelayAddress(pfrom.GetId(), addr, reachable);
3827  }
3828  // Do not store addresses outside our network
3829  if (reachable) {
3830  vAddrOk.push_back(addr);
3831  }
3832  }
3833  peer->m_addr_processed += num_proc;
3834  peer->m_addr_rate_limited += num_rate_limit;
3835  LogPrint(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
3836  vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3837 
3838  m_addrman.Add(vAddrOk, pfrom.addr, 2h);
3839  if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3840 
3841  // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3842  if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
3843  LogPrint(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId());
3844  pfrom.fDisconnect = true;
3845  }
3846  return;
3847  }
3848 
3849  if (msg_type == NetMsgType::INV) {
3850  std::vector<CInv> vInv;
3851  vRecv >> vInv;
3852  if (vInv.size() > MAX_INV_SZ)
3853  {
3854  Misbehaving(*peer, 20, strprintf("inv message size = %u", vInv.size()));
3855  return;
3856  }
3857 
3858  const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3859 
3860  LOCK(cs_main);
3861 
3862  const auto current_time{GetTime<std::chrono::microseconds>()};
3863  uint256* best_block{nullptr};
3864 
3865  for (CInv& inv : vInv) {
3866  if (interruptMsgProc) return;
3867 
3868  // Ignore INVs that don't match wtxidrelay setting.
3869  // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3870  // This is fine as no INV messages are involved in that process.
3871  if (peer->m_wtxid_relay) {
3872  if (inv.IsMsgTx()) continue;
3873  } else {
3874  if (inv.IsMsgWtx()) continue;
3875  }
3876 
3877  if (inv.IsMsgBlk()) {
3878  const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3879  LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3880 
3881  UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3882  if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
3883  // Headers-first is the primary method of announcement on
3884  // the network. If a node fell back to sending blocks by
3885  // inv, it may be for a re-org, or because we haven't
3886  // completed initial headers sync. The final block hash
3887  // provided should be the highest, so send a getheaders and
3888  // then fetch the blocks we need to catch up.
3889  best_block = &inv.hash;
3890  }
3891  } else if (inv.IsGenTxMsg()) {
3892  if (reject_tx_invs) {
3893  LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of protocol, disconnecting peer=%d\n", inv.hash.ToString(), pfrom.GetId());
3894  pfrom.fDisconnect = true;
3895  return;
3896  }
3897  const GenTxid gtxid = ToGenTxid(inv);
3898  const bool fAlreadyHave = AlreadyHaveTx(gtxid);
3899  LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3900 
3901  AddKnownTx(*peer, inv.hash);
3902  if (!fAlreadyHave && !m_chainman.IsInitialBlockDownload()) {
3903  AddTxAnnouncement(pfrom, gtxid, current_time);
3904  }
3905  } else {
3906  LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
3907  }
3908  }
3909 
3910  if (best_block != nullptr) {
3911  // If we haven't started initial headers-sync with this peer, then
3912  // consider sending a getheaders now. On initial startup, there's a
3913  // reliability vs bandwidth tradeoff, where we are only trying to do
3914  // initial headers sync with one peer at a time, with a long
3915  // timeout (at which point, if the sync hasn't completed, we will
3916  // disconnect the peer and then choose another). In the meantime,
3917  // as new blocks are found, we are willing to add one new peer per
3918  // block to sync with as well, to sync quicker in the case where
3919  // our initial peer is unresponsive (but less bandwidth than we'd
3920  // use if we turned on sync with all peers).
3921  CNodeState& state{*Assert(State(pfrom.GetId()))};
3922  if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
3923  if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
3924  LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
3925  m_chainman.m_best_header->nHeight, best_block->ToString(),
3926  pfrom.GetId());
3927  }
3928  if (!state.fSyncStarted) {
3929  peer->m_inv_triggered_getheaders_before_sync = true;
3930  // Update the last block hash that triggered a new headers
3931  // sync, so that we don't turn on headers sync with more
3932  // than 1 new peer every new block.
3933  m_last_block_inv_triggering_headers_sync = *best_block;
3934  }
3935  }
3936  }
3937 
3938  return;
3939  }
3940 
3941  if (msg_type == NetMsgType::GETDATA) {
3942  std::vector<CInv> vInv;
3943  vRecv >> vInv;
3944  if (vInv.size() > MAX_INV_SZ)
3945  {
3946  Misbehaving(*peer, 20, strprintf("getdata message size = %u", vInv.size()));
3947  return;
3948  }
3949 
3950  LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
3951 
3952  if (vInv.size() > 0) {
3953  LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
3954  }
3955 
3956  {
3957  LOCK(peer->m_getdata_requests_mutex);
3958  peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
3959  ProcessGetData(pfrom, *peer, interruptMsgProc);
3960  }
3961 
3962  return;
3963  }
3964 
3965  if (msg_type == NetMsgType::GETBLOCKS) {
3966  CBlockLocator locator;
3967  uint256 hashStop;
3968  vRecv >> locator >> hashStop;
3969 
3970  if (locator.vHave.size() > MAX_LOCATOR_SZ) {
3971  LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
3972  pfrom.fDisconnect = true;
3973  return;
3974  }
3975 
3976  // We might have announced the currently-being-connected tip using a
3977  // compact block, which resulted in the peer sending a getblocks
3978  // request, which we would otherwise respond to without the new block.
3979  // To avoid this situation we simply verify that we are on our best
3980  // known chain now. This is super overkill, but we handle it better
3981  // for getheaders requests, and there are no known nodes which support
3982  // compact blocks but still use getblocks to request blocks.
3983  {
3984  std::shared_ptr<const CBlock> a_recent_block;
3985  {
3986  LOCK(m_most_recent_block_mutex);
3987  a_recent_block = m_most_recent_block;
3988  }
3989  BlockValidationState state;
3990  if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
3991  LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
3992  }
3993  }
3994 
3995  LOCK(cs_main);
3996 
3997  // Find the last block the caller has in the main chain
3998  const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
3999 
4000  // Send the rest of the chain
4001  if (pindex)
4002  pindex = m_chainman.ActiveChain().Next(pindex);
4003  int nLimit = 500;
4004  LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4005  for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4006  {
4007  if (pindex->GetBlockHash() == hashStop)
4008  {
4009  LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4010  break;
4011  }
4012  // If pruning, don't inv blocks unless we have on disk and are likely to still have
4013  // for some reasonable time window (1 hour) that block relay might require.
4014  const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4015  if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4016  LogPrint(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4017  break;
4018  }
4019  WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4020  if (--nLimit <= 0) {
4021  // When this block is requested, we'll send an inv that'll
4022  // trigger the peer to getblocks the next batch of inventory.
4023  LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4024  WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4025  break;
4026  }
4027  }
4028  return;
4029  }
4030 
4031  if (msg_type == NetMsgType::GETBLOCKTXN) {
4033  vRecv >> req;
4034 
4035  std::shared_ptr<const CBlock> recent_block;
4036  {
4037  LOCK(m_most_recent_block_mutex);
4038  if (m_most_recent_block_hash == req.blockhash)
4039  recent_block = m_most_recent_block;
4040  // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4041  }
4042  if (recent_block) {
4043  SendBlockTransactions(pfrom, *peer, *recent_block, req);
4044  return;
4045  }
4046 
4047  {
4048  LOCK(cs_main);
4049 
4050  const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4051  if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4052  LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4053  return;
4054  }
4055 
4056  if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4057  CBlock block;
4058  const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, *pindex)};
4059  assert(ret);
4060 
4061  SendBlockTransactions(pfrom, *peer, block, req);
4062  return;
4063  }
4064  }
4065 
4066  // If an older block is requested (should never happen in practice,
4067  // but can happen in tests) send a block response instead of a
4068  // blocktxn response. Sending a full block response instead of a
4069  // small blocktxn response is preferable in the case where a peer
4070  // might maliciously send lots of getblocktxn requests to trigger
4071  // expensive disk reads, because it will require the peer to
4072  // actually receive all the data read from disk over the network.
4073  LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4074  CInv inv{MSG_WITNESS_BLOCK, req.blockhash};
4075  WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4076  // The message processing loop will go around again (without pausing) and we'll respond then
4077  return;
4078  }
4079 
4080  if (msg_type == NetMsgType::GETHEADERS) {
4081  CBlockLocator locator;
4082  uint256 hashStop;
4083  vRecv >> locator >> hashStop;
4084 
4085  if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4086  LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
4087  pfrom.fDisconnect = true;
4088  return;
4089  }
4090 
4091  if (m_chainman.m_blockman.LoadingBlocks()) {
4092  LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4093  return;
4094  }
4095 
4096  LOCK(cs_main);
4097 
4098  // Note that if we were to be on a chain that forks from the checkpointed
4099  // chain, then serving those headers to a peer that has seen the
4100  // checkpointed chain would cause that peer to disconnect us. Requiring
4101  // that our chainwork exceed the minimum chain work is a protection against
4102  // being fed a bogus chain when we started up for the first time and
4103  // getting partitioned off the honest network for serving that chain to
4104  // others.
4105  if (m_chainman.ActiveTip() == nullptr ||
4106  (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4107  LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4108  // Just respond with an empty headers message, to tell the peer to
4109  // go away but not treat us as unresponsive.
4110  MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4111  return;
4112  }
4113 
4114  CNodeState *nodestate = State(pfrom.GetId());
4115  const CBlockIndex* pindex = nullptr;
4116  if (locator.IsNull())
4117  {
4118  // If locator is null, return the hashStop block
4119  pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4120  if (!pindex) {
4121  return;
4122  }
4123 
4124  if (!BlockRequestAllowed(pindex)) {
4125  LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4126  return;
4127  }
4128  }
4129  else
4130  {
4131  // Find the last block the caller has in the main chain
4132  pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4133  if (pindex)
4134  pindex = m_chainman.ActiveChain().Next(pindex);
4135  }
4136 
4137  // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4138  std::vector<CBlock> vHeaders;
4139  int nLimit = MAX_HEADERS_RESULTS;
4140  LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4141  for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4142  {
4143  vHeaders.emplace_back(pindex->GetBlockHeader());
4144  if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4145  break;
4146  }
4147  // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4148  // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4149  // headers message). In both cases it's safe to update
4150  // pindexBestHeaderSent to be our tip.
4151  //
4152  // It is important that we simply reset the BestHeaderSent value here,
4153  // and not max(BestHeaderSent, newHeaderSent). We might have announced
4154  // the currently-being-connected tip using a compact block, which
4155  // resulted in the peer sending a headers request, which we respond to
4156  // without the new block. By resetting the BestHeaderSent, we ensure we
4157  // will re-announce the new block via headers (or compact blocks again)
4158  // in the SendMessages logic.
4159  nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4160  MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4161  return;
4162  }
4163 
4164  if (msg_type == NetMsgType::TX) {
4165  if (RejectIncomingTxs(pfrom)) {
4166  LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId());
4167  pfrom.fDisconnect = true;
4168  return;
4169  }
4170 
4171  // Stop processing the transaction early if we are still in IBD since we don't
4172  // have enough information to validate it yet. Sending unsolicited transactions
4173  // is not considered a protocol violation, so don't punish the peer.
4174  if (m_chainman.IsInitialBlockDownload()) return;
4175 
4176  CTransactionRef ptx;
4177  vRecv >> TX_WITH_WITNESS(ptx);
4178  const CTransaction& tx = *ptx;
4179 
4180  const uint256& txid = ptx->GetHash();
4181  const uint256& wtxid = ptx->GetWitnessHash();
4182 
4183  const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
4184  AddKnownTx(*peer, hash);
4185 
4186  LOCK(cs_main);
4187 
4188  m_txrequest.ReceivedResponse(pfrom.GetId(), txid);
4189  if (tx.HasWitness()) m_txrequest.ReceivedResponse(pfrom.GetId(), wtxid);
4190 
4191  // We do the AlreadyHaveTx() check using wtxid, rather than txid - in the
4192  // absence of witness malleation, this is strictly better, because the
4193  // recent rejects filter may contain the wtxid but rarely contains
4194  // the txid of a segwit transaction that has been rejected.
4195  // In the presence of witness malleation, it's possible that by only
4196  // doing the check with wtxid, we could overlook a transaction which
4197  // was confirmed with a different witness, or exists in our mempool
4198  // with a different witness, but this has limited downside:
4199  // mempool validation does its own lookup of whether we have the txid
4200  // already; and an adversary can already relay us old transactions
4201  // (older than our recency filter) if trying to DoS us, without any need
4202  // for witness malleation.
4203  if (AlreadyHaveTx(GenTxid::Wtxid(wtxid))) {
4205  // Always relay transactions received from peers with forcerelay
4206  // permission, even if they were already in the mempool, allowing
4207  // the node to function as a gateway for nodes hidden behind it.
4208  if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
4209  LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4210  tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4211  } else {
4212  LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4213  tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4214  RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4215  }
4216  }
4217  // If a tx is detected by m_recent_rejects it is ignored. Because we haven't
4218  // submitted the tx to our mempool, we won't have computed a DoS
4219  // score for it or determined exactly why we consider it invalid.
4220  //
4221  // This means we won't penalize any peer subsequently relaying a DoSy
4222  // tx (even if we penalized the first peer who gave it to us) because
4223  // we have to account for m_recent_rejects showing false positives. In
4224  // other words, we shouldn't penalize a peer if we aren't *sure* they
4225  // submitted a DoSy tx.
4226  //
4227  // Note that m_recent_rejects doesn't just record DoSy or invalid
4228  // transactions, but any tx not accepted by the mempool, which may be
4229  // due to node policy (vs. consensus). So we can't blanket penalize a
4230  // peer simply for relaying a tx that our m_recent_rejects has caught,
4231  // regardless of false positives.
4232  return;
4233  }
4234 
4235  const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4236  const TxValidationState& state = result.m_state;
4237 
4239  // As this version of the transaction was acceptable, we can forget about any
4240  // requests for it.
4241  m_txrequest.ForgetTxHash(tx.GetHash());
4242  m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4243  RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4244  m_orphanage.AddChildrenToWorkSet(tx);
4245 
4246  pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4247 
4248  LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
4249  pfrom.GetId(),
4250  tx.GetHash().ToString(),
4251  tx.GetWitnessHash().ToString(),
4252  m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
4253 
4254  for (const CTransactionRef& removedTx : result.m_replaced_transactions.value()) {
4255  AddToCompactExtraTransactions(removedTx);
4256  }
4257  }
4259  {
4260  bool fRejectedParents = false; // It may be the case that the orphans parents have all been rejected
4261 
4262  // Deduplicate parent txids, so that we don't have to loop over
4263  // the same parent txid more than once down below.
4264  std::vector<uint256> unique_parents;
4265  unique_parents.reserve(tx.vin.size());
4266  for (const CTxIn& txin : tx.vin) {
4267  // We start with all parents, and then remove duplicates below.
4268  unique_parents.push_back(txin.prevout.hash);
4269  }
4270  std::sort(unique_parents.begin(), unique_parents.end());
4271  unique_parents.erase(std::unique(unique_parents.begin(), unique_parents.end()), unique_parents.end());
4272  for (const uint256& parent_txid : unique_parents) {
4273  if (m_recent_rejects.contains(parent_txid)) {
4274  fRejectedParents = true;
4275  break;
4276  }
4277  }
4278  if (!fRejectedParents) {
4279  const auto current_time{GetTime<std::chrono::microseconds>()};
4280 
4281  for (const uint256& parent_txid : unique_parents) {
4282  // Here, we only have the txid (and not wtxid) of the
4283  // inputs, so we only request in txid mode, even for
4284  // wtxidrelay peers.
4285  // Eventually we should replace this with an improved
4286  // protocol for getting all unconfirmed parents.
4287  const auto gtxid{GenTxid::Txid(parent_txid)};
4288  AddKnownTx(*peer, parent_txid);
4289  if (!AlreadyHaveTx(gtxid)) AddTxAnnouncement(pfrom, gtxid, current_time);
4290  }
4291 
4292  if (m_orphanage.AddTx(ptx, pfrom.GetId())) {
4293  AddToCompactExtraTransactions(ptx);
4294  }
4295 
4296  // Once added to the orphan pool, a tx is considered AlreadyHave, and we shouldn't request it anymore.
4297  m_txrequest.ForgetTxHash(tx.GetHash());
4298  m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4299 
4300  // DoS prevention: do not allow m_orphanage to grow unbounded (see CVE-2012-3789)
4301  m_orphanage.LimitOrphans(m_opts.max_orphan_txs);
4302  } else {
4303  LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s (wtxid=%s)\n",
4304  tx.GetHash().ToString(),
4305  tx.GetWitnessHash().ToString());
4306  // We will continue to reject this tx since it has rejected
4307  // parents so avoid re-requesting it from other peers.
4308  // Here we add both the txid and the wtxid, as we know that
4309  // regardless of what witness is provided, we will not accept
4310  // this, so we don't need to allow for redownload of this txid
4311  // from any of our non-wtxidrelay peers.
4312  m_recent_rejects.insert(tx.GetHash().ToUint256());
4313  m_recent_rejects.insert(tx.GetWitnessHash().ToUint256());
4314  m_txrequest.ForgetTxHash(tx.GetHash());
4315  m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4316  }
4317  } else {
4319  // We can add the wtxid of this transaction to our reject filter.
4320  // Do not add txids of witness transactions or witness-stripped
4321  // transactions to the filter, as they can have been malleated;
4322  // adding such txids to the reject filter would potentially
4323  // interfere with relay of valid transactions from peers that
4324  // do not support wtxid-based relay. See
4325  // https://github.com/bitcoin/bitcoin/issues/8279 for details.
4326  // We can remove this restriction (and always add wtxids to
4327  // the filter even for witness stripped transactions) once
4328  // wtxid-based relay is broadly deployed.
4329  // See also comments in https://github.com/bitcoin/bitcoin/pull/18044#discussion_r443419034
4330  // for concerns around weakening security of unupgraded nodes
4331  // if we start doing this too early.
4332  m_recent_rejects.insert(tx.GetWitnessHash().ToUint256());
4333  m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4334  // If the transaction failed for TX_INPUTS_NOT_STANDARD,
4335  // then we know that the witness was irrelevant to the policy
4336  // failure, since this check depends only on the txid
4337  // (the scriptPubKey being spent is covered by the txid).
4338  // Add the txid to the reject filter to prevent repeated
4339  // processing of this transaction in the event that child
4340  // transactions are later received (resulting in
4341  // parent-fetching by txid via the orphan-handling logic).
4343  m_recent_rejects.insert(tx.GetHash().ToUint256());
4344  m_txrequest.ForgetTxHash(tx.GetHash());
4345  }
4346  if (RecursiveDynamicUsage(*ptx) < 100000) {
4347  AddToCompactExtraTransactions(ptx);
4348  }
4349  }
4350  }
4351 
4352  if (state.IsInvalid()) {
4353  LogPrint(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
4354  tx.GetHash().ToString(),
4355  tx.GetWitnessHash().ToString(),
4356  pfrom.GetId(),
4357  state.ToString());
4358  MaybePunishNodeForTx(pfrom.GetId(), state);
4359  }
4360  return;
4361  }
4362 
4363  if (msg_type == NetMsgType::CMPCTBLOCK)
4364  {
4365  // Ignore cmpctblock received while importing
4366  if (m_chainman.m_blockman.LoadingBlocks()) {
4367  LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4368  return;
4369  }
4370 
4371  CBlockHeaderAndShortTxIDs cmpctblock;
4372  vRecv >> cmpctblock;
4373 
4374  bool received_new_header = false;
4375  const auto blockhash = cmpctblock.header.GetHash();
4376 
4377  {
4378  LOCK(cs_main);
4379 
4380  const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4381  if (!prev_block) {
4382  // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4383  if (!m_chainman.IsInitialBlockDownload()) {
4384  MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4385  }
4386  return;
4387  } else if (prev_block->nChainWork + CalculateHeadersWork({cmpctblock.header}) < GetAntiDoSWorkThreshold()) {
4388  // If we get a low-work header in a compact block, we can ignore it.
4389  LogPrint(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4390  return;
4391  }
4392 
4393  if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4394  received_new_header = true;
4395  }
4396  }
4397 
4398  const CBlockIndex *pindex = nullptr;
4399  BlockValidationState state;
4400  if (!m_chainman.ProcessNewBlockHeaders({cmpctblock.header}, /*min_pow_checked=*/true, state, &pindex)) {
4401  if (state.IsInvalid()) {
4402  MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4403  return;
4404  }
4405  }
4406 
4407  if (received_new_header) {
4408  LogPrintfCategory(BCLog::NET, "Saw new cmpctblock header hash=%s peer=%d\n",
4409  blockhash.ToString(), pfrom.GetId());
4410  }
4411 
4412  bool fProcessBLOCKTXN = false;
4413 
4414  // If we end up treating this as a plain headers message, call that as well
4415  // without cs_main.
4416  bool fRevertToHeaderProcessing = false;
4417 
4418  // Keep a CBlock for "optimistic" compactblock reconstructions (see
4419  // below)
4420  std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4421  bool fBlockReconstructed = false;
4422 
4423  {
4424  LOCK(cs_main);
4425  // If AcceptBlockHeader returned true, it set pindex
4426  assert(pindex);
4427  UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4428 
4429  CNodeState *nodestate = State(pfrom.GetId());
4430 
4431  // If this was a new header with more work than our tip, update the
4432  // peer's last block announcement time
4433  if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4434  nodestate->m_last_block_announcement = GetTime();
4435  }
4436 
4437  if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4438  return;
4439 
4440  auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4441  size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4442  bool requested_block_from_this_peer{false};
4443 
4444  // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4445  bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4446 
4447  while (range_flight.first != range_flight.second) {
4448  if (range_flight.first->second.first == pfrom.GetId()) {
4449  requested_block_from_this_peer = true;
4450  break;
4451  }
4452  range_flight.first++;
4453  }
4454 
4455  if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4456  pindex->nTx != 0) { // We had this block at some point, but pruned it
4457  if (requested_block_from_this_peer) {
4458  // We requested this block for some reason, but our mempool will probably be useless
4459  // so we just grab the block via normal getdata
4460  std::vector<CInv> vInv(1);
4461  vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4462  MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4463  }
4464  return;
4465  }
4466 
4467  // If we're not close to tip yet, give up and let parallel block fetch work its magic
4468  if (!already_in_flight && !CanDirectFetch()) {
4469  return;
4470  }
4471 
4472  // We want to be a bit conservative just to be extra careful about DoS
4473  // possibilities in compact block processing...
4474  if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4475  if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4476  requested_block_from_this_peer) {
4477  std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4478  if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4479  if (!(*queuedBlockIt)->partialBlock)
4480  (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4481  else {
4482  // The block was already in flight using compact blocks from the same peer
4483  LogPrint(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4484  return;
4485  }
4486  }
4487 
4488  PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4489  ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4490  if (status == READ_STATUS_INVALID) {
4491  RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4492  Misbehaving(*peer, 100, "invalid compact block");
4493  return;
4494  } else if (status == READ_STATUS_FAILED) {
4495  if (first_in_flight) {
4496  // Duplicate txindexes, the block is now in-flight, so just request it
4497  std::vector<CInv> vInv(1);
4498  vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4499  MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4500  } else {
4501  // Give up for this peer and wait for other peer(s)
4502  RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4503  }
4504  return;
4505  }
4506 
4508  for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4509  if (!partialBlock.IsTxAvailable(i))
4510  req.indexes.push_back(i);
4511  }
4512  if (req.indexes.empty()) {
4513  fProcessBLOCKTXN = true;
4514  } else if (first_in_flight) {
4515  // We will try to round-trip any compact blocks we get on failure,
4516  // as long as it's first...
4517  req.blockhash = pindex->GetBlockHash();
4518  MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4519  } else if (pfrom.m_bip152_highbandwidth_to &&
4520  (!pfrom.IsInboundConn() ||
4521  IsBlockRequestedFromOutbound(blockhash) ||
4522  already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4523  // ... or it's a hb relay peer and:
4524  // - peer is outbound, or
4525  // - we already have an outbound attempt in flight(so we'll take what we can get), or
4526  // - it's not the final parallel download slot (which we may reserve for first outbound)
4527  req.blockhash = pindex->GetBlockHash();
4528  MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4529  } else {
4530  // Give up for this peer and wait for other peer(s)
4531  RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4532  }
4533  } else {
4534  // This block is either already in flight from a different
4535  // peer, or this peer has too many blocks outstanding to
4536  // download from.
4537  // Optimistically try to reconstruct anyway since we might be
4538  // able to without any round trips.
4539  PartiallyDownloadedBlock tempBlock(&m_mempool);
4540  ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4541  if (status != READ_STATUS_OK) {
4542  // TODO: don't ignore failures
4543  return;
4544  }
4545  std::vector<CTransactionRef> dummy;
4546  status = tempBlock.FillBlock(*pblock, dummy);
4547  if (status == READ_STATUS_OK) {
4548  fBlockReconstructed = true;
4549  }
4550  }
4551  } else {
4552  if (requested_block_from_this_peer) {
4553  // We requested this block, but its far into the future, so our
4554  // mempool will probably be useless - request the block normally
4555  std::vector<CInv> vInv(1);
4556  vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4557  MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4558  return;
4559  } else {
4560  // If this was an announce-cmpctblock, we want the same treatment as a header message
4561  fRevertToHeaderProcessing = true;
4562  }
4563  }
4564  } // cs_main
4565 
4566  if (fProcessBLOCKTXN) {
4567  BlockTransactions txn;
4568  txn.blockhash = blockhash;
4569  return ProcessCompactBlockTxns(pfrom, *peer, txn);
4570  }
4571 
4572  if (fRevertToHeaderProcessing) {
4573  // Headers received from HB compact block peers are permitted to be
4574  // relayed before full validation (see BIP 152), so we don't want to disconnect
4575  // the peer if the header turns out to be for an invalid block.
4576  // Note that if a peer tries to build on an invalid chain, that
4577  // will be detected and the peer will be disconnected/discouraged.
4578  return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4579  }
4580 
4581  if (fBlockReconstructed) {
4582  // If we got here, we were able to optimistically reconstruct a
4583  // block that is in flight from some other peer.
4584  {
4585  LOCK(cs_main);
4586  mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4587  }
4588  // Setting force_processing to true means that we bypass some of
4589  // our anti-DoS protections in AcceptBlock, which filters
4590  // unrequested blocks that might be trying to waste our resources
4591  // (eg disk space). Because we only try to reconstruct blocks when
4592  // we're close to caught up (via the CanDirectFetch() requirement
4593  // above, combined with the behavior of not requesting blocks until
4594  // we have a chain with at least the minimum chain work), and we ignore
4595  // compact blocks with less work than our tip, it is safe to treat
4596  // reconstructed compact blocks as having been requested.
4597  ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4598  LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4599  if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4600  // Clear download state for this block, which is in
4601  // process from some other peer. We do this after calling
4602  // ProcessNewBlock so that a malleated cmpctblock announcement
4603  // can't be used to interfere with block relay.
4604  RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4605  }
4606  }
4607  return;
4608  }
4609 
4610  if (msg_type == NetMsgType::BLOCKTXN)
4611  {
4612  // Ignore blocktxn received while importing
4613  if (m_chainman.m_blockman.LoadingBlocks()) {
4614  LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4615  return;
4616  }
4617 
4618  BlockTransactions resp;
4619  vRecv >> resp;
4620 
4621  return ProcessCompactBlockTxns(pfrom, *peer, resp);
4622  }
4623 
4624  if (msg_type == NetMsgType::HEADERS)
4625  {
4626  // Ignore headers received while importing
4627  if (m_chainman.m_blockman.LoadingBlocks()) {
4628  LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4629  return;
4630  }
4631 
4632  // Assume that this is in response to any outstanding getheaders
4633  // request we may have sent, and clear out the time of our last request
4634  peer->m_last_getheaders_timestamp = {};
4635 
4636  std::vector<CBlockHeader> headers;
4637 
4638  // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4639  unsigned int nCount = ReadCompactSize(vRecv);
4640  if (nCount > MAX_HEADERS_RESULTS) {
4641  Misbehaving(*peer, 20, strprintf("headers message size = %u", nCount));
4642  return;
4643  }
4644  headers.resize(nCount);
4645  for (unsigned int n = 0; n < nCount; n++) {
4646  vRecv >> headers[n];
4647  ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4648  }
4649 
4650  ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4651 
4652  // Check if the headers presync progress needs to be reported to validation.
4653  // This needs to be done without holding the m_headers_presync_mutex lock.
4654  if (m_headers_presync_should_signal.exchange(false)) {
4655  HeadersPresyncStats stats;
4656  {
4657  LOCK(m_headers_presync_mutex);
4658  auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4659  if (it != m_headers_presync_stats.end()) stats = it->second;
4660  }
4661  if (stats.second) {
4662  m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4663  }
4664  }
4665 
4666  return;
4667  }
4668 
4669  if (msg_type == NetMsgType::BLOCK)
4670  {
4671  // Ignore block received while importing
4672  if (m_chainman.m_blockman.LoadingBlocks()) {
4673  LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4674  return;
4675  }
4676 
4677  std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4678  vRecv >> TX_WITH_WITNESS(*pblock);
4679 
4680  LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4681 
4682  bool forceProcessing = false;
4683  const uint256 hash(pblock->GetHash());
4684  bool min_pow_checked = false;
4685  {
4686  LOCK(cs_main);
4687  // Always process the block if we requested it, since we may
4688  // need it even when it's not a candidate for a new best tip.
4689  forceProcessing = IsBlockRequested(hash);
4690  RemoveBlockRequest(hash, pfrom.GetId());
4691  // mapBlockSource is only used for punishing peers and setting
4692  // which peers send us compact blocks, so the race between here and
4693  // cs_main in ProcessNewBlock is fine.
4694  mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4695 
4696  // Check work on this block against our anti-dos thresholds.
4697  const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock);
4698  if (prev_block && prev_block->nChainWork + CalculateHeadersWork({pblock->GetBlockHeader()}) >= GetAntiDoSWorkThreshold()) {
4699  min_pow_checked = true;
4700  }
4701  }
4702  ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4703  return;
4704  }
4705 
4706  if (msg_type == NetMsgType::GETADDR) {
4707  // This asymmetric behavior for inbound and outbound connections was introduced
4708  // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4709  // to users' AddrMan and later request them by sending getaddr messages.
4710  // Making nodes which are behind NAT and can only make outgoing connections ignore
4711  // the getaddr message mitigates the attack.
4712  if (!pfrom.IsInboundConn()) {
4713  LogPrint(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4714  return;
4715  }
4716 
4717  // Since this must be an inbound connection, SetupAddressRelay will
4718  // never fail.
4719  Assume(SetupAddressRelay(pfrom, *peer));
4720 
4721  // Only send one GetAddr response per connection to reduce resource waste
4722  // and discourage addr stamping of INV announcements.
4723  if (peer->m_getaddr_recvd) {
4724  LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4725  return;
4726  }
4727  peer->m_getaddr_recvd = true;
4728 
4729  peer->m_addrs_to_send.clear();
4730  std::vector<CAddress> vAddr;
4732  vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4733  } else {
4734  vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4735  }
4736  for (const CAddress &addr : vAddr) {
4737  PushAddress(*peer, addr);
4738  }
4739  return;
4740  }
4741 
4742  if (msg_type == NetMsgType::MEMPOOL) {
4743  // Only process received mempool messages if we advertise NODE_BLOOM
4744  // or if the peer has mempool permissions.
4745  if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4746  {
4748  {
4749  LogPrint(BCLog::NET, "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom.GetId());
4750  pfrom.fDisconnect = true;
4751  }
4752  return;
4753  }
4754 
4755  if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4756  {
4758  {
4759  LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom.GetId());
4760  pfrom.fDisconnect = true;
4761  }
4762  return;
4763  }
4764 
4765  if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4766  LOCK(tx_relay->m_tx_inventory_mutex);
4767  tx_relay->m_send_mempool = true;
4768  }
4769  return;
4770  }
4771 
4772  if (msg_type == NetMsgType::PING) {
4773  if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4774  uint64_t nonce = 0;
4775  vRecv >> nonce;
4776  // Echo the message back with the nonce. This allows for two useful features:
4777  //
4778  // 1) A remote node can quickly check if the connection is operational
4779  // 2) Remote nodes can measure the latency of the network thread. If this node
4780  // is overloaded it won't respond to pings quickly and the remote node can
4781  // avoid sending us more work, like chain download requests.
4782  //
4783  // The nonce stops the remote getting confused between different pings: without
4784  // it, if the remote node sends a ping once per second and this node takes 5
4785  // seconds to respond to each, the 5th ping the remote sends would appear to
4786  // return very quickly.
4787  MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4788  }
4789  return;
4790  }
4791 
4792  if (msg_type == NetMsgType::PONG) {
4793  const auto ping_end = time_received;
4794  uint64_t nonce = 0;
4795  size_t nAvail = vRecv.in_avail();
4796  bool bPingFinished = false;
4797  std::string sProblem;
4798 
4799  if (nAvail >= sizeof(nonce)) {
4800  vRecv >> nonce;
4801 
4802  // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4803  if (peer->m_ping_nonce_sent != 0) {
4804  if (nonce == peer->m_ping_nonce_sent) {
4805  // Matching pong received, this ping is no longer outstanding
4806  bPingFinished = true;
4807  const auto ping_time = ping_end - peer->m_ping_start.load();
4808  if (ping_time.count() >= 0) {
4809  // Let connman know about this successful ping-pong
4810  pfrom.PongReceived(ping_time);
4811  } else {
4812  // This should never happen
4813  sProblem = "Timing mishap";
4814  }
4815  } else {
4816  // Nonce mismatches are normal when pings are overlapping
4817  sProblem = "Nonce mismatch";
4818  if (nonce == 0) {
4819  // This is most likely a bug in another implementation somewhere; cancel this ping
4820  bPingFinished = true;
4821  sProblem = "Nonce zero";
4822  }
4823  }
4824  } else {
4825  sProblem = "Unsolicited pong without ping";
4826  }
4827  } else {
4828  // This is most likely a bug in another implementation somewhere; cancel this ping
4829  bPingFinished = true;
4830  sProblem = "Short payload";
4831  }
4832 
4833  if (!(sProblem.empty())) {
4834  LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
4835  pfrom.GetId(),
4836  sProblem,
4837  peer->m_ping_nonce_sent,
4838  nonce,
4839  nAvail);
4840  }
4841  if (bPingFinished) {
4842  peer->m_ping_nonce_sent = 0;
4843  }
4844  return;
4845  }
4846 
4847  if (msg_type == NetMsgType::FILTERLOAD) {
4848  if (!(peer->m_our_services & NODE_BLOOM)) {
4849  LogPrint(BCLog::NET, "filterload received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
4850  pfrom.fDisconnect = true;
4851  return;
4852  }
4853  CBloomFilter filter;
4854  vRecv >> filter;
4855 
4856  if (!filter.IsWithinSizeConstraints())
4857  {
4858  // There is no excuse for sending a too-large filter
4859  Misbehaving(*peer, 100, "too-large bloom filter");
4860  } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4861  {
4862  LOCK(tx_relay->m_bloom_filter_mutex);
4863  tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4864  tx_relay->m_relay_txs = true;
4865  }
4866  pfrom.m_bloom_filter_loaded = true;
4867  pfrom.m_relays_txs = true;
4868  }
4869  return;
4870  }
4871 
4872  if (msg_type == NetMsgType::FILTERADD) {
4873  if (!(peer->m_our_services & NODE_BLOOM)) {
4874  LogPrint(BCLog::NET, "filteradd received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
4875  pfrom.fDisconnect = true;
4876  return;
4877  }
4878  std::vector<unsigned char> vData;
4879  vRecv >> vData;
4880 
4881  // Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
4882  // and thus, the maximum size any matched object can have) in a filteradd message
4883  bool bad = false;
4884  if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4885  bad = true;
4886  } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4887  LOCK(tx_relay->m_bloom_filter_mutex);
4888  if (tx_relay->m_bloom_filter) {
4889  tx_relay->m_bloom_filter->insert(vData);
4890  } else {
4891  bad = true;
4892  }
4893  }
4894  if (bad) {
4895  Misbehaving(*peer, 100, "bad filteradd message");
4896  }
4897  return;
4898  }
4899 
4900  if (msg_type == NetMsgType::FILTERCLEAR) {
4901  if (!(peer->m_our_services & NODE_BLOOM)) {
4902  LogPrint(BCLog::NET, "filterclear received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
4903  pfrom.fDisconnect = true;
4904  return;
4905  }
4906  auto tx_relay = peer->GetTxRelay();
4907  if (!tx_relay) return;
4908 
4909  {
4910  LOCK(tx_relay->m_bloom_filter_mutex);
4911  tx_relay->m_bloom_filter = nullptr;
4912  tx_relay->m_relay_txs = true;
4913  }
4914  pfrom.m_bloom_filter_loaded = false;
4915  pfrom.m_relays_txs = true;
4916  return;
4917  }
4918 
4919  if (msg_type == NetMsgType::FEEFILTER) {
4920  CAmount newFeeFilter = 0;
4921  vRecv >> newFeeFilter;
4922  if (MoneyRange(newFeeFilter)) {
4923  if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4924  tx_relay->m_fee_filter_received = newFeeFilter;
4925  }
4926  LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
4927  }
4928  return;
4929  }
4930 
4931  if (msg_type == NetMsgType::GETCFILTERS) {
4932  ProcessGetCFilters(pfrom, *peer, vRecv);
4933  return;
4934  }
4935 
4936  if (msg_type == NetMsgType::GETCFHEADERS) {
4937  ProcessGetCFHeaders(pfrom, *peer, vRecv);
4938  return;
4939  }
4940 
4941  if (msg_type == NetMsgType::GETCFCHECKPT) {
4942  ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4943  return;
4944  }
4945 
4946  if (msg_type == NetMsgType::NOTFOUND) {
4947  std::vector<CInv> vInv;
4948  vRecv >> vInv;
4950  LOCK(::cs_main);
4951  for (CInv &inv : vInv) {
4952  if (inv.IsGenTxMsg()) {
4953  // If we receive a NOTFOUND message for a tx we requested, mark the announcement for it as
4954  // completed in TxRequestTracker.
4955  m_txrequest.ReceivedResponse(pfrom.GetId(), inv.hash);
4956  }
4957  }
4958  }
4959  return;
4960  }
4961 
4962  // Ignore unknown commands for extensibility
4963  LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
4964  return;
4965 }
4966 
4967 bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4968 {
4969  {
4970  LOCK(peer.m_misbehavior_mutex);
4971 
4972  // There's nothing to do if the m_should_discourage flag isn't set
4973  if (!peer.m_should_discourage) return false;
4974 
4975  peer.m_should_discourage = false;
4976  } // peer.m_misbehavior_mutex
4977 
4979  // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4980  LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
4981  return false;
4982  }
4983 
4984  if (pnode.IsManualConn()) {
4985  // We never disconnect or discourage manual peers for bad behavior
4986  LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
4987  return false;
4988  }
4989 
4990  if (pnode.addr.IsLocal()) {
4991  // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4992  // all peers on the same local address)
4993  LogPrint(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
4994  pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4995  pnode.fDisconnect = true;
4996  return true;
4997  }
4998 
4999  // Normal case: Disconnect the peer and discourage all nodes sharing the address
5000  LogPrint(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
5001  if (m_banman) m_banman->Discourage(pnode.addr);
5002  m_connman.DisconnectNode(pnode.addr);
5003  return true;
5004 }
5005 
5006 bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
5007 {
5008  AssertLockHeld(g_msgproc_mutex);
5009 
5010  PeerRef peer = GetPeerRef(pfrom->GetId());
5011  if (peer == nullptr) return false;
5012 
5013  {
5014  LOCK(peer->m_getdata_requests_mutex);
5015  if (!peer->m_getdata_requests.empty()) {
5016  ProcessGetData(*pfrom, *peer, interruptMsgProc);
5017  }
5018  }
5019 
5020  const bool processed_orphan = ProcessOrphanTx(*peer);
5021 
5022  if (pfrom->fDisconnect)
5023  return false;
5024 
5025  if (processed_orphan) return true;
5026 
5027  // this maintains the order of responses
5028  // and prevents m_getdata_requests to grow unbounded
5029  {
5030  LOCK(peer->m_getdata_requests_mutex);
5031  if (!peer->m_getdata_requests.empty()) return true;
5032  }
5033 
5034  // Don't bother if send buffer is too full to respond anyway
5035  if (pfrom->fPauseSend) return false;
5036 
5037  auto poll_result{pfrom->PollMessage()};
5038  if (!poll_result) {
5039  // No message to process
5040  return false;
5041  }
5042 
5043  CNetMessage& msg{poll_result->first};
5044  bool fMoreWork = poll_result->second;
5045 
5046  TRACE6(net, inbound_message,
5047  pfrom->GetId(),
5048  pfrom->m_addr_name.c_str(),
5049  pfrom->ConnectionTypeAsString().c_str(),
5050  msg.m_type.c_str(),
5051  msg.m_recv.size(),
5052  msg.m_recv.data()
5053  );
5054 
5055  if (m_opts.capture_messages) {
5056  CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5057  }
5058 
5059  try {
5060  ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5061  if (interruptMsgProc) return false;
5062  {
5063  LOCK(peer->m_getdata_requests_mutex);
5064  if (!peer->m_getdata_requests.empty()) fMoreWork = true;
5065  }
5066  // Does this peer has an orphan ready to reconsider?
5067  // (Note: we may have provided a parent for an orphan provided
5068  // by another peer that was already processed; in that case,
5069  // the extra work may not be noticed, possibly resulting in an
5070  // unnecessary 100ms delay)
5071  if (m_orphanage.HaveTxToReconsider(peer->m_id)) fMoreWork = true;
5072  } catch (const std::exception& e) {
5073  LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5074  } catch (...) {
5075  LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5076  }
5077 
5078  return fMoreWork;
5079 }
5080 
5081 void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5082 {
5084 
5085  CNodeState &state = *State(pto.GetId());
5086 
5087  if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5088  // This is an outbound peer subject to disconnection if they don't
5089  // announce a block with as much work as the current tip within
5090  // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5091  // their chain has more work than ours, we should sync to it,
5092  // unless it's invalid, in which case we should find that out and
5093  // disconnect from them elsewhere).
5094  if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5095  if (state.m_chain_sync.m_timeout != 0s) {
5096  state.m_chain_sync.m_timeout = 0s;
5097  state.m_chain_sync.m_work_header = nullptr;
5098  state.m_chain_sync.m_sent_getheaders = false;
5099  }
5100  } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5101  // Our best block known by this peer is behind our tip, and we're either noticing
5102  // that for the first time, OR this peer was able to catch up to some earlier point
5103  // where we checked against our tip.
5104  // Either way, set a new timeout based on current tip.
5105  state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5106  state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5107  state.m_chain_sync.m_sent_getheaders = false;
5108  } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5109  // No evidence yet that our peer has synced to a chain with work equal to that
5110  // of our tip, when we first detected it was behind. Send a single getheaders
5111  // message to give the peer a chance to update us.
5112  if (state.m_chain_sync.m_sent_getheaders) {
5113  // They've run out of time to catch up!
5114  LogPrintf("Disconnecting outbound peer %d for old chain, best known block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>");
5115  pto.fDisconnect = true;
5116  } else {
5117  assert(state.m_chain_sync.m_work_header);
5118  // Here, we assume that the getheaders message goes out,
5119  // because it'll either go out or be skipped because of a
5120  // getheaders in-flight already, in which case the peer should
5121  // still respond to us with a sufficiently high work chain tip.
5122  MaybeSendGetHeaders(pto,
5123  GetLocator(state.m_chain_sync.m_work_header->pprev),
5124  peer);
5125  LogPrint(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5126  state.m_chain_sync.m_sent_getheaders = true;
5127  // Bump the timeout to allow a response, which could clear the timeout
5128  // (if the response shows the peer has synced), reset the timeout (if
5129  // the peer syncs to the required work but not to our tip), or result
5130  // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5131  // has not sufficiently progressed)
5132  state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5133  }
5134  }
5135  }
5136 }
5137 
5138 void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5139 {
5140  // If we have any extra block-relay-only peers, disconnect the youngest unless
5141  // it's given us a block -- in which case, compare with the second-youngest, and
5142  // out of those two, disconnect the peer who least recently gave us a block.
5143  // The youngest block-relay-only peer would be the extra peer we connected
5144  // to temporarily in order to sync our tip; see net.cpp.
5145  // Note that we use higher nodeid as a measure for most recent connection.
5146  if (m_connman.GetExtraBlockRelayCount() > 0) {
5147  std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5148 
5149  m_connman.ForEachNode([&](CNode* pnode) {
5150  if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5151  if (pnode->GetId() > youngest_peer.first) {
5152  next_youngest_peer = youngest_peer;
5153  youngest_peer.first = pnode->GetId();
5154  youngest_peer.second = pnode->m_last_block_time;
5155  }
5156  });
5157  NodeId to_disconnect = youngest_peer.first;
5158  if (youngest_peer.second > next_youngest_peer.second) {
5159  // Our newest block-relay-only peer gave us a block more recently;
5160  // disconnect our second youngest.
5161  to_disconnect = next_youngest_peer.first;
5162  }
5163  m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5165  // Make sure we're not getting a block right now, and that
5166  // we've been connected long enough for this eviction to happen
5167  // at all.
5168  // Note that we only request blocks from a peer if we learn of a
5169  // valid headers chain with at least as much work as our tip.
5170  CNodeState *node_state = State(pnode->GetId());
5171  if (node_state == nullptr ||
5172  (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5173  pnode->fDisconnect = true;
5174  LogPrint(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5175  pnode->GetId(), count_seconds(pnode->m_last_block_time));
5176  return true;
5177  } else {
5178  LogPrint(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5179  pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5180  }
5181  return false;
5182  });
5183  }
5184 
5185  // Check whether we have too many outbound-full-relay peers
5186  if (m_connman.GetExtraFullOutboundCount() > 0) {
5187  // If we have more outbound-full-relay peers than we target, disconnect one.
5188  // Pick the outbound-full-relay peer that least recently announced
5189  // us a new block, with ties broken by choosing the more recent
5190  // connection (higher node id)
5191  // Protect peers from eviction if we don't have another connection
5192  // to their network, counting both outbound-full-relay and manual peers.
5193  NodeId worst_peer = -1;
5194  int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5195 
5196  m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5197  AssertLockHeld(::cs_main);
5198 
5199  // Only consider outbound-full-relay peers that are not already
5200  // marked for disconnection
5201  if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5202  CNodeState *state = State(pnode->GetId());
5203  if (state == nullptr) return; // shouldn't be possible, but just in case
5204  // Don't evict our protected peers
5205  if (state->m_chain_sync.m_protect) return;
5206  // If this is the only connection on a particular network that is
5207  // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5208  if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5209  if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5210  worst_peer = pnode->GetId();
5211  oldest_block_announcement = state->m_last_block_announcement;
5212  }
5213  });
5214  if (worst_peer != -1) {
5215  bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5217 
5218  // Only disconnect a peer that has been connected to us for
5219  // some reasonable fraction of our check-frequency, to give
5220  // it time for new information to have arrived.
5221  // Also don't disconnect any peer we're trying to download a
5222  // block from.
5223  CNodeState &state = *State(pnode->GetId());
5224  if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5225  LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5226  pnode->fDisconnect = true;
5227  return true;
5228  } else {
5229  LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5230  pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5231  return false;
5232  }
5233  });
5234  if (disconnected) {
5235  // If we disconnected an extra peer, that means we successfully
5236  // connected to at least one peer after the last time we
5237  // detected a stale tip. Don't try any more extra peers until
5238  // we next detect a stale tip, to limit the load we put on the
5239  // network from these extra connections.
5240  m_connman.SetTryNewOutboundPeer(false);
5241  }
5242  }
5243  }
5244 }
5245 
5246 void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5247 {
5248  LOCK(cs_main);
5249 
5250  auto now{GetTime<std::chrono::seconds>()};
5251 
5252  EvictExtraOutboundPeers(now);
5253 
5254  if (now > m_stale_tip_check_time) {
5255  // Check whether our tip is stale, and if so, allow using an extra
5256  // outbound peer
5257  if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5258  LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5259  count_seconds(now - m_last_tip_update.load()));
5260  m_connman.SetTryNewOutboundPeer(true);
5261  } else if (m_connman.GetTryNewOutboundPeer()) {
5262  m_connman.SetTryNewOutboundPeer(false);
5263  }
5264  m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5265  }
5266 
5267  if (!m_initial_sync_finished && CanDirectFetch()) {
5268  m_connman.StartExtraBlockRelayPeers();
5269  m_initial_sync_finished = true;
5270  }
5271 }
5272 
5273 void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5274 {
5275  if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5276  peer.m_ping_nonce_sent &&
5277  now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5278  {
5279  // The ping timeout is using mocktime. To disable the check during
5280  // testing, increase -peertimeout.
5281  LogPrint(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id);
5282  node_to.fDisconnect = true;
5283  return;
5284  }
5285 
5286  bool pingSend = false;
5287 
5288  if (peer.m_ping_queued) {
5289  // RPC ping request by user
5290  pingSend = true;
5291  }
5292 
5293  if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5294  // Ping automatically sent as a latency probe & keepalive.
5295  pingSend = true;
5296  }
5297 
5298  if (pingSend) {
5299  uint64_t nonce;
5300  do {
5301  nonce = GetRand<uint64_t>();
5302  } while (nonce == 0);
5303  peer.m_ping_queued = false;
5304  peer.m_ping_start = now;
5305  if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5306  peer.m_ping_nonce_sent = nonce;
5307  MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5308  } else {
5309  // Peer is too old to support ping command with nonce, pong will never arrive.
5310  peer.m_ping_nonce_sent = 0;
5311  MakeAndPushMessage(node_to, NetMsgType::PING);
5312  }
5313  }
5314 }
5315 
5316 void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5317 {
5318  // Nothing to do for non-address-relay peers
5319  if (!peer.m_addr_relay_enabled) return;
5320 
5321  LOCK(peer.m_addr_send_times_mutex);
5322  // Periodically advertise our local address to the peer.
5323  if (fListen && !m_chainman.IsInitialBlockDownload() &&
5324  peer.m_next_local_addr_send < current_time) {
5325  // If we've sent before, clear the bloom filter for the peer, so that our
5326  // self-announcement will actually go out.
5327  // This might be unnecessary if the bloom filter has already rolled
5328  // over since our last self-announcement, but there is only a small
5329  // bandwidth cost that we can incur by doing this (which happens
5330  // once a day on average).
5331  if (peer.m_next_local_addr_send != 0us) {
5332  peer.m_addr_known->reset();
5333  }
5334  if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5335  CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5336  PushAddress(peer, local_addr);
5337  }
5338  peer.m_next_local_addr_send = GetExponentialRand(current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5339  }
5340 
5341  // We sent an `addr` message to this peer recently. Nothing more to do.
5342  if (current_time <= peer.m_next_addr_send) return;
5343 
5344  peer.m_next_addr_send = GetExponentialRand(current_time, AVG_ADDRESS_BROADCAST_INTERVAL);
5345 
5346  if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5347  // Should be impossible since we always check size before adding to
5348  // m_addrs_to_send. Recover by trimming the vector.
5349  peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5350  }
5351 
5352  // Remove addr records that the peer already knows about, and add new
5353  // addrs to the m_addr_known filter on the same pass.
5354  auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5355  bool ret = peer.m_addr_known->contains(addr.GetKey());
5356  if (!ret) peer.m_addr_known->insert(addr.GetKey());
5357  return ret;
5358  };
5359  peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5360  peer.m_addrs_to_send.end());
5361 
5362  // No addr messages to send
5363  if (peer.m_addrs_to_send.empty()) return;
5364 
5365  if (peer.m_wants_addrv2) {
5366  MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5367  } else {
5368  MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5369  }
5370  peer.m_addrs_to_send.clear();
5371 
5372  // we only send the big addr message once
5373  if (peer.m_addrs_to_send.capacity() > 40) {
5374  peer.m_addrs_to_send.shrink_to_fit();
5375  }
5376 }
5377 
5378 void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5379 {
5380  // Delay sending SENDHEADERS (BIP 130) until we're done with an
5381  // initial-headers-sync with this peer. Receiving headers announcements for
5382  // new blocks while trying to sync their headers chain is problematic,
5383  // because of the state tracking done.
5384  if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5385  LOCK(cs_main);
5386  CNodeState &state = *State(node.GetId());
5387  if (state.pindexBestKnownBlock != nullptr &&
5388  state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5389  // Tell our peer we prefer to receive headers rather than inv's
5390  // We send this to non-NODE NETWORK peers as well, because even
5391  // non-NODE NETWORK peers can announce blocks (such as pruning
5392  // nodes)
5393  MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5394  peer.m_sent_sendheaders = true;
5395  }
5396  }
5397 }
5398 
5399 void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5400 {
5401  if (m_opts.ignore_incoming_txs) return;
5402  if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5403  // peers with the forcerelay permission should not filter txs to us
5405  // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5406  // transactions to us, regardless of feefilter state.
5407  if (pto.IsBlockOnlyConn()) return;
5408 
5409  CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5410 
5411  if (m_chainman.IsInitialBlockDownload()) {
5412  // Received tx-inv messages are discarded when the active
5413  // chainstate is in IBD, so tell the peer to not send them.
5414  currentFilter = MAX_MONEY;
5415  } else {
5416  static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5417  if (peer.m_fee_filter_sent == MAX_FILTER) {
5418  // Send the current filter if we sent MAX_FILTER previously
5419  // and made it out of IBD.
5420  peer.m_next_send_feefilter = 0us;
5421  }
5422  }
5423  if (current_time > peer.m_next_send_feefilter) {
5424  CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5425  // We always have a fee filter of at least the min relay fee
5426  filterToSend = std::max(filterToSend, m_mempool.m_min_relay_feerate.GetFeePerK());
5427  if (filterToSend != peer.m_fee_filter_sent) {
5428  MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5429  peer.m_fee_filter_sent = filterToSend;
5430  }
5431  peer.m_next_send_feefilter = GetExponentialRand(current_time, AVG_FEEFILTER_BROADCAST_INTERVAL);
5432  }
5433  // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5434  // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5435  else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5436  (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5437  peer.m_next_send_feefilter = current_time + GetRandomDuration<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5438  }
5439 }
5440 
5441 namespace {
5442 class CompareInvMempoolOrder
5443 {
5444  CTxMemPool* mp;
5445  bool m_wtxid_relay;
5446 public:
5447  explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
5448  {
5449  mp = _mempool;
5450  m_wtxid_relay = use_wtxid;
5451  }
5452 
5453  bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
5454  {
5455  /* As std::make_heap produces a max-heap, we want the entries with the
5456  * fewest ancestors/highest fee to sort later. */
5457  return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
5458  }
5459 };
5460 } // namespace
5461 
5462 bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5463 {
5464  // block-relay-only peers may never send txs to us
5465  if (peer.IsBlockOnlyConn()) return true;
5466  if (peer.IsFeelerConn()) return true;
5467  // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5468  if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5469  return false;
5470 }
5471 
5472 bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5473 {
5474  // We don't participate in addr relay with outbound block-relay-only
5475  // connections to prevent providing adversaries with the additional
5476  // information of addr traffic to infer the link.
5477  if (node.IsBlockOnlyConn()) return false;
5478 
5479  if (!peer.m_addr_relay_enabled.exchange(true)) {
5480  // During version message processing (non-block-relay-only outbound peers)
5481  // or on first addr-related message we have received (inbound peers), initialize
5482  // m_addr_known.
5483  peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5484  }
5485 
5486  return true;
5487 }
5488 
5489 bool PeerManagerImpl::SendMessages(CNode* pto)
5490 {
5491  AssertLockHeld(g_msgproc_mutex);
5492 
5493  PeerRef peer = GetPeerRef(pto->GetId());
5494  if (!peer) return false;
5495  const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5496 
5497  // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5498  // disconnect misbehaving peers even before the version handshake is complete.
5499  if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5500 
5501  // Don't send anything until the version handshake is complete
5502  if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5503  return true;
5504 
5505  const auto current_time{GetTime<std::chrono::microseconds>()};
5506 
5507  if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5508  LogPrint(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId());
5509  pto->fDisconnect = true;
5510  return true;
5511  }
5512 
5513  MaybeSendPing(*pto, *peer, current_time);
5514 
5515  // MaybeSendPing may have marked peer for disconnection
5516  if (pto->fDisconnect) return true;
5517 
5518  MaybeSendAddr(*pto, *peer, current_time);
5519 
5520  MaybeSendSendHeaders(*pto, *peer);
5521 
5522  {
5523  LOCK(cs_main);
5524 
5525  CNodeState &state = *State(pto->GetId());
5526 
5527  // Start block sync
5528  if (m_chainman.m_best_header == nullptr) {
5529  m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5530  }
5531 
5532  // Determine whether we might try initial headers sync or parallel
5533  // block download from this peer -- this mostly affects behavior while
5534  // in IBD (once out of IBD, we sync from all peers).
5535  bool sync_blocks_and_headers_from_peer = false;
5536  if (state.fPreferredDownload) {
5537  sync_blocks_and_headers_from_peer = true;
5538  } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5539  // Typically this is an inbound peer. If we don't have any outbound
5540  // peers, or if we aren't downloading any blocks from such peers,
5541  // then allow block downloads from this peer, too.
5542  // We prefer downloading blocks from outbound peers to avoid
5543  // putting undue load on (say) some home user who is just making
5544  // outbound connections to the network, but if our only source of
5545  // the latest blocks is from an inbound peer, we have to be sure to
5546  // eventually download it (and not just wait indefinitely for an
5547  // outbound peer to have it).
5548  if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5549  sync_blocks_and_headers_from_peer = true;
5550  }
5551  }
5552 
5553  if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5554  // Only actively request headers from a single peer, unless we're close to today.
5555  if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > GetAdjustedTime() - 24h) {
5556  const CBlockIndex* pindexStart = m_chainman.m_best_header;
5557  /* If possible, start at the block preceding the currently
5558  best known header. This ensures that we always get a
5559  non-empty list of headers back as long as the peer
5560  is up-to-date. With a non-empty response, we can initialise
5561  the peer's known best block. This wouldn't be possible
5562  if we requested starting at m_chainman.m_best_header and
5563  got back an empty response. */
5564  if (pindexStart->pprev)
5565  pindexStart = pindexStart->pprev;
5566  if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5567  LogPrint(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5568 
5569  state.fSyncStarted = true;
5570  peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5571  (
5572  // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5573  // to maintain precision
5574  std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5575  Ticks<std::chrono::seconds>(GetAdjustedTime() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5576  );
5577  nSyncStarted++;
5578  }
5579  }
5580  }
5581 
5582  //
5583  // Try sending block announcements via headers
5584  //
5585  {
5586  // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5587  // list of block hashes we're relaying, and our peer wants
5588  // headers announcements, then find the first header
5589  // not yet known to our peer but would connect, and send.
5590  // If no header would connect, or if we have too many
5591  // blocks, or if the peer doesn't want headers, just
5592  // add all to the inv queue.
5593  LOCK(peer->m_block_inv_mutex);
5594  std::vector<CBlock> vHeaders;
5595  bool fRevertToInv = ((!peer->m_prefers_headers &&
5596  (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5597  peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5598  const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5599  ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5600 
5601  if (!fRevertToInv) {
5602  bool fFoundStartingHeader = false;
5603  // Try to find first header that our peer doesn't have, and
5604  // then send all headers past that one. If we come across any
5605  // headers that aren't on m_chainman.ActiveChain(), give up.
5606  for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5607  const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5608  assert(pindex);
5609  if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5610  // Bail out if we reorged away from this block
5611  fRevertToInv = true;
5612  break;
5613  }
5614  if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5615  // This means that the list of blocks to announce don't
5616  // connect to each other.
5617  // This shouldn't really be possible to hit during
5618  // regular operation (because reorgs should take us to
5619  // a chain that has some block not on the prior chain,
5620  // which should be caught by the prior check), but one
5621  // way this could happen is by using invalidateblock /
5622  // reconsiderblock repeatedly on the tip, causing it to
5623  // be added multiple times to m_blocks_for_headers_relay.
5624  // Robustly deal with this rare situation by reverting
5625  // to an inv.
5626  fRevertToInv = true;
5627  break;
5628  }
5629  pBestIndex = pindex;
5630  if (fFoundStartingHeader) {
5631  // add this to the headers message
5632  vHeaders.emplace_back(pindex->GetBlockHeader());
5633  } else if (PeerHasHeader(&state, pindex)) {
5634  continue; // keep looking for the first new block
5635  } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5636  // Peer doesn't have this header but they do have the prior one.
5637  // Start sending headers.
5638  fFoundStartingHeader = true;
5639  vHeaders.emplace_back(pindex->GetBlockHeader());
5640  } else {
5641  // Peer doesn't have this header or the prior one -- nothing will
5642  // connect, so bail out.
5643  fRevertToInv = true;
5644  break;
5645  }
5646  }
5647  }
5648  if (!fRevertToInv && !vHeaders.empty()) {
5649  if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5650  // We only send up to 1 block as header-and-ids, as otherwise
5651  // probably means we're doing an initial-ish-sync or they're slow
5652  LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5653  vHeaders.front().GetHash().ToString(), pto->GetId());
5654 
5655  std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5656  {
5657  LOCK(m_most_recent_block_mutex);
5658  if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5659  cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5660  }
5661  }
5662  if (cached_cmpctblock_msg.has_value()) {
5663  PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5664  } else {
5665  CBlock block;
5666  const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, *pBestIndex)};
5667  assert(ret);
5668  CBlockHeaderAndShortTxIDs cmpctblock{block};
5669  MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5670  }
5671  state.pindexBestHeaderSent = pBestIndex;
5672  } else if (peer->m_prefers_headers) {
5673  if (vHeaders.size() > 1) {
5674  LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5675  vHeaders.size(),
5676  vHeaders.front().GetHash().ToString(),
5677  vHeaders.back().GetHash().ToString(), pto->GetId());
5678  } else {
5679  LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5680  vHeaders.front().GetHash().ToString(), pto->GetId());
5681  }
5682  MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5683  state.pindexBestHeaderSent = pBestIndex;
5684  } else
5685  fRevertToInv = true;
5686  }
5687  if (fRevertToInv) {
5688  // If falling back to using an inv, just try to inv the tip.
5689  // The last entry in m_blocks_for_headers_relay was our tip at some point
5690  // in the past.
5691  if (!peer->m_blocks_for_headers_relay.empty()) {
5692  const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5693  const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5694  assert(pindex);
5695 
5696  // Warn if we're announcing a block that is not on the main chain.
5697  // This should be very rare and could be optimized out.
5698  // Just log for now.
5699  if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5700  LogPrint(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5701  hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5702  }
5703 
5704  // If the peer's chain has this block, don't inv it back.
5705  if (!PeerHasHeader(&state, pindex)) {
5706  peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5707  LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5708  pto->GetId(), hashToAnnounce.ToString());
5709  }
5710  }
5711  }
5712  peer->m_blocks_for_headers_relay.clear();
5713  }
5714 
5715  //
5716  // Message: inventory
5717  //
5718  std::vector<CInv> vInv;
5719  {
5720  LOCK(peer->m_block_inv_mutex);
5721  vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5722 
5723  // Add blocks
5724  for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5725  vInv.emplace_back(MSG_BLOCK, hash);
5726  if (vInv.size() == MAX_INV_SZ) {
5727  MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5728  vInv.clear();
5729  }
5730  }
5731  peer->m_blocks_for_inv_relay.clear();
5732  }
5733 
5734  if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5735  LOCK(tx_relay->m_tx_inventory_mutex);
5736  // Check whether periodic sends should happen
5737  bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5738  if (tx_relay->m_next_inv_send_time < current_time) {
5739  fSendTrickle = true;
5740  if (pto->IsInboundConn()) {
5741  tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
5742  } else {
5743  tx_relay->m_next_inv_send_time = GetExponentialRand(current_time, OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5744  }
5745  }
5746 
5747  // Time to send but the peer has requested we not relay transactions.
5748  if (fSendTrickle) {
5749  LOCK(tx_relay->m_bloom_filter_mutex);
5750  if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5751  }
5752 
5753  // Respond to BIP35 mempool requests
5754  if (fSendTrickle && tx_relay->m_send_mempool) {
5755  auto vtxinfo = m_mempool.infoAll();
5756  tx_relay->m_send_mempool = false;
5757  const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5758 
5759  LOCK(tx_relay->m_bloom_filter_mutex);
5760 
5761  for (const auto& txinfo : vtxinfo) {
5762  CInv inv{
5763  peer->m_wtxid_relay ? MSG_WTX : MSG_TX,
5764  peer->m_wtxid_relay ?
5765  txinfo.tx->GetWitnessHash().ToUint256() :
5766  txinfo.tx->GetHash().ToUint256(),
5767  };
5768  tx_relay->m_tx_inventory_to_send.erase(inv.hash);
5769 
5770  // Don't send transactions that peers will not put into their mempool
5771  if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5772  continue;
5773  }
5774  if (tx_relay->m_bloom_filter) {
5775  if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5776  }
5777  tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5778  vInv.push_back(inv);
5779  if (vInv.size() == MAX_INV_SZ) {
5780  MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5781  vInv.clear();
5782  }
5783  }
5784  }
5785 
5786  // Determine transactions to relay
5787  if (fSendTrickle) {
5788  // Produce a vector with all candidates for sending
5789  std::vector<std::set<uint256>::iterator> vInvTx;
5790  vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5791  for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5792  vInvTx.push_back(it);
5793  }
5794  const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5795  // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5796  // A heap is used so that not all items need sorting if only a few are being sent.
5797  CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
5798  std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5799  // No reason to drain out at many times the network's capacity,
5800  // especially since we have many peers and some will draw much shorter delays.
5801  unsigned int nRelayedTransactions = 0;
5802  LOCK(tx_relay->m_bloom_filter_mutex);
5803  size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5804  broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5805  while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5806  // Fetch the top element from the heap
5807  std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5808  std::set<uint256>::iterator it = vInvTx.back();
5809  vInvTx.pop_back();
5810  uint256 hash = *it;
5811  CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
5812  // Remove it from the to-be-sent set
5813  tx_relay->m_tx_inventory_to_send.erase(it);
5814  // Check if not in the filter already
5815  if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
5816  continue;
5817  }
5818  // Not in the mempool anymore? don't bother sending it.
5819  auto txinfo = m_mempool.info(ToGenTxid(inv));
5820  if (!txinfo.tx) {
5821  continue;
5822  }
5823  // Peer told you to not send transactions at that feerate? Don't bother sending it.
5824  if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5825  continue;
5826  }
5827  if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5828  // Send
5829  vInv.push_back(inv);
5830  nRelayedTransactions++;
5831  if (vInv.size() == MAX_INV_SZ) {
5832  MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5833  vInv.clear();
5834  }
5835  tx_relay->m_tx_inventory_known_filter.insert(hash);
5836  }
5837 
5838  // Ensure we'll respond to GETDATA requests for anything we've just announced
5839  LOCK(m_mempool.cs);
5840  tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5841  }
5842  }
5843  if (!vInv.empty())
5844  MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5845 
5846  // Detect whether we're stalling
5847  auto stalling_timeout = m_block_stalling_timeout.load();
5848  if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
5849  // Stalling only triggers when the block download window cannot move. During normal steady state,
5850  // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5851  // should only happen during initial block download.
5852  LogPrintf("Peer=%d%s is stalling block download, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5853  pto->fDisconnect = true;
5854  // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5855  // bandwidth is insufficient.
5856  const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5857  if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5858  LogPrint(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
5859  }
5860  return true;
5861  }
5862  // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5863  // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5864  // We compensate for other peers to prevent killing off peers due to our own downstream link
5865  // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5866  // to unreasonably increase our timeout.
5867  if (state.vBlocksInFlight.size() > 0) {
5868  QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5869  int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5870  if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
5871  LogPrintf("Timeout downloading block %s from peer=%d%s, disconnecting\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5872  pto->fDisconnect = true;
5873  return true;
5874  }
5875  }
5876  // Check for headers sync timeouts
5877  if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
5878  // Detect whether this is a stalling initial-headers-sync peer
5879  if (m_chainman.m_best_header->Time() <= GetAdjustedTime() - 24h) {
5880  if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
5881  // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5882  // and we have others we could be using instead.
5883  // Note: If all our peers are inbound, then we won't
5884  // disconnect our sync peer for stalling; we have bigger
5885  // problems if we can't get any outbound peers.
5887  LogPrintf("Timeout downloading headers from peer=%d%s, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5888  pto->fDisconnect = true;
5889  return true;
5890  } else {
5891  LogPrintf("Timeout downloading headers from noban peer=%d%s, not disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5892  // Reset the headers sync state so that we have a
5893  // chance to try downloading from a different peer.
5894  // Note: this will also result in at least one more
5895  // getheaders message to be sent to
5896  // this peer (eventually).
5897  state.fSyncStarted = false;
5898  nSyncStarted--;
5899  peer->m_headers_sync_timeout = 0us;
5900  }
5901  }
5902  } else {
5903  // After we've caught up once, reset the timeout so we can't trigger
5904  // disconnect later.
5905  peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5906  }
5907  }
5908 
5909  // Check that outbound peers have reasonable chains
5910  // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5911  ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5912 
5913  //
5914  // Message: getdata (blocks)
5915  //
5916  std::vector<CInv> vGetData;
5917  if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
5918  std::vector<const CBlockIndex*> vToDownload;
5919  NodeId staller = -1;
5920  auto get_inflight_budget = [&state]() {
5921  return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5922  };
5923 
5924  // If a snapshot chainstate is in use, we want to find its next blocks
5925  // before the background chainstate to prioritize getting to network tip.
5926  FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5927  if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
5928  TryDownloadingHistoricalBlocks(
5929  *peer,
5930  get_inflight_budget(),
5931  vToDownload, m_chainman.GetBackgroundSyncTip(),
5932  Assert(m_chainman.GetSnapshotBaseBlock()));
5933  }
5934  for (const CBlockIndex *pindex : vToDownload) {
5935  uint32_t nFetchFlags = GetFetchFlags(*peer);
5936  vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5937  BlockRequested(pto->GetId(), *pindex);
5938  LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
5939  pindex->nHeight, pto->GetId());
5940  }
5941  if (state.vBlocksInFlight.empty() && staller != -1) {
5942  if (State(staller)->m_stalling_since == 0us) {
5943  State(staller)->m_stalling_since = current_time;
5944  LogPrint(BCLog::NET, "Stall started peer=%d\n", staller);
5945  }
5946  }
5947  }
5948 
5949  //
5950  // Message: getdata (transactions)
5951  //
5952  std::vector<std::pair<NodeId, GenTxid>> expired;
5953  auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired);
5954  for (const auto& entry : expired) {
5955  LogPrint(BCLog::NET, "timeout of inflight %s %s from peer=%d\n", entry.second.IsWtxid() ? "wtx" : "tx",
5956  entry.second.GetHash().ToString(), entry.first);
5957  }
5958  for (const GenTxid& gtxid : requestable) {
5959  if (!AlreadyHaveTx(gtxid)) {
5960  LogPrint(