Bitcoin ABC 0.26.3
P2P Digital Currency
Loading...
Searching...
No Matches
merkleblock.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-2016 The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <merkleblock.h>
7
9#include <hash.h>
10
11std::vector<uint8_t> BitsToBytes(const std::vector<bool> &bits) {
12 std::vector<uint8_t> ret((bits.size() + 7) / 8);
13 for (unsigned int p = 0; p < bits.size(); p++) {
14 ret[p / 8] |= bits[p] << (p % 8);
15 }
16 return ret;
17}
18
19std::vector<bool> BytesToBits(const std::vector<uint8_t> &bytes) {
20 std::vector<bool> ret(bytes.size() * 8);
21 for (unsigned int p = 0; p < ret.size(); p++) {
22 ret[p] = (bytes[p / 8] & (1 << (p % 8))) != 0;
23 }
24 return ret;
25}
26
28 const std::set<TxId> *txids) {
29 header = block.GetBlockHeader();
30
31 std::vector<bool> vMatch;
32 std::vector<uint256> vHashes;
33
34 vMatch.reserve(block.vtx.size());
35 vHashes.reserve(block.vtx.size());
36
37 if (filter) {
38 for (const auto &tx : block.vtx) {
39 vMatch.push_back(filter->MatchAndInsertOutputs(*tx));
40 }
41 }
42
43 for (size_t i = 0; i < block.vtx.size(); i++) {
44 const CTransaction *tx = block.vtx[i].get();
45 const TxId &txid = tx->GetId();
46 if (filter) {
47 if (!vMatch[i]) {
48 vMatch[i] = filter->MatchInputs(*tx);
49 }
50 if (vMatch[i]) {
51 vMatchedTxn.push_back(std::make_pair(i, txid));
52 }
53 } else {
54 vMatch.push_back(txids && txids->count(txid));
55 }
56
57 vHashes.push_back(txid);
58 }
59
61}
62
64 const std::vector<uint256> &vTxid) {
65 // we can never have zero txs in a merkle block, we always need the
66 // coinbase tx if we do not have this assert, we can hit a memory
67 // access violation when indexing into vTxid
68 assert(vTxid.size() != 0);
69 if (height == 0) {
70 // hash at height 0 is the txids themself.
71 return vTxid[pos];
72 }
73
74 // Calculate left hash.
75 uint256 left = CalcHash(height - 1, pos * 2, vTxid), right;
76 // Calculate right hash if not beyond the end of the array - copy left hash
77 // otherwise.
78 if (pos * 2 + 1 < CalcTreeWidth(height - 1)) {
79 right = CalcHash(height - 1, pos * 2 + 1, vTxid);
80 } else {
81 right = left;
82 }
83
84 // Combine subhashes.
85 return Hash(left, right);
86}
87
88void CPartialMerkleTree::TraverseAndBuild(int height, size_t pos,
89 const std::vector<uint256> &vTxid,
90 const std::vector<bool> &vMatch) {
91 // Determine whether this node is the parent of at least one matched txid.
92 bool fParentOfMatch = false;
93 for (size_t p = pos << height; p < (pos + 1) << height && p < nTransactions;
94 p++) {
96 }
97
98 // Store as flag bit.
99 vBits.push_back(fParentOfMatch);
100 if (height == 0 || !fParentOfMatch) {
101 // If at height 0, or nothing interesting below, store hash and stop.
102 vHash.push_back(CalcHash(height, pos, vTxid));
103 } else {
104 // Otherwise, don't store any hash, but descend into the subtrees.
105 TraverseAndBuild(height - 1, pos * 2, vTxid, vMatch);
106 if (pos * 2 + 1 < CalcTreeWidth(height - 1)) {
107 TraverseAndBuild(height - 1, pos * 2 + 1, vTxid, vMatch);
108 }
109 }
110}
111
113 size_t &nBitsUsed,
114 size_t &nHashUsed,
115 std::vector<uint256> &vMatch,
116 std::vector<size_t> &vnIndex) {
117 if (nBitsUsed >= vBits.size()) {
118 // Overflowed the bits array - failure
119 fBad = true;
120 return uint256();
121 }
122
124 if (height == 0 || !fParentOfMatch) {
125 // If at height 0, or nothing interesting below, use stored hash and do
126 // not descend.
127 if (nHashUsed >= vHash.size()) {
128 // Overflowed the hash array - failure
129 fBad = true;
130 return uint256();
131 }
132 const uint256 &hash = vHash[nHashUsed++];
133 // In case of height 0, we have a matched txid.
134 if (height == 0 && fParentOfMatch) {
135 vMatch.push_back(hash);
136 vnIndex.push_back(pos);
137 }
138 return hash;
139 }
140
141 // Otherwise, descend into the subtrees to extract matched txids and hashes.
142 uint256 left = TraverseAndExtract(height - 1, pos * 2, nBitsUsed, nHashUsed,
143 vMatch, vnIndex),
144 right;
145 if (pos * 2 + 1 < CalcTreeWidth(height - 1)) {
146 right = TraverseAndExtract(height - 1, pos * 2 + 1, nBitsUsed,
148 if (right == left) {
149 // The left and right branches should never be identical, as the
150 // transaction hashes covered by them must each be unique.
151 fBad = true;
152 }
153 } else {
154 right = left;
155 }
156
157 // and combine them before returning.
158 return Hash(left, right);
159}
160
162 const std::vector<bool> &vMatch)
163 : nTransactions(vTxid.size()), fBad(false) {
164 // reset state
165 vBits.clear();
166 vHash.clear();
167
168 // calculate height of tree
169 int nHeight = 0;
170 while (CalcTreeWidth(nHeight) > 1) {
171 nHeight++;
172 }
173
174 // traverse the partial tree
176}
177
178CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {}
179
181 std::vector<size_t> &vnIndex) {
182 vMatch.clear();
183
184 // An empty set will not work
185 if (nTransactions == 0) {
186 return uint256();
187 }
188
189 // Check for excessively high numbers of transactions.
190 // FIXME: Track the maximum block size we've seen and use it here.
191
192 // There can never be more hashes provided than one for every txid.
193 if (vHash.size() > nTransactions) {
194 return uint256();
195 }
196
197 // There must be at least one bit per node in the partial tree, and at least
198 // one node per hash.
199 if (vBits.size() < vHash.size()) {
200 return uint256();
201 }
202
203 // calculate height of tree.
204 int nHeight = 0;
205 while (CalcTreeWidth(nHeight) > 1) {
206 nHeight++;
207 }
208
209 // traverse the partial tree.
210 size_t nBitsUsed = 0, nHashUsed = 0;
211 uint256 hashMerkleRoot =
213
214 // verify that no problems occurred during the tree traversal.
215 if (fBad) {
216 return uint256();
217 }
218
219 // verify that all bits were consumed (except for the padding caused by
220 // serializing it as a byte sequence)
221 if ((nBitsUsed + 7) / 8 != (vBits.size() + 7) / 8) {
222 return uint256();
223 }
224
225 // verify that all hashes were consumed.
226 if (nHashUsed != vHash.size()) {
227 return uint256();
228 }
229
230 return hashMerkleRoot;
231}
Definition block.h:60
std::vector< CTransactionRef > vtx
Definition block.h:63
CBlockHeader GetBlockHeader() const
Definition block.h:86
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition bloom.h:44
bool MatchInputs(const CTransaction &tx)
Scan inputs to see if the spent outpoints are a match, or the input scripts contain matching elements...
Definition bloom.cpp:148
bool MatchAndInsertOutputs(const CTransaction &tx)
Scans output scripts for matches and adds those outpoints to the filter for spend detection.
Definition bloom.cpp:98
CBlockHeader header
Public only for unit testing.
std::vector< std::pair< size_t, uint256 > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
CPartialMerkleTree txn
Data structure that represents a partial merkle tree.
Definition merkleblock.h:56
uint32_t nTransactions
the total number of transactions in the block
Definition merkleblock.h:59
uint256 TraverseAndExtract(int height, size_t pos, size_t &nBitsUsed, size_t &nHashUsed, std::vector< uint256 > &vMatch, std::vector< size_t > &vnIndex)
Recursive function that traverses tree nodes, consuming the bits and hashes produced by TraverseAndBu...
size_t CalcTreeWidth(int height) const
Helper function to efficiently calculate the number of nodes at given height in the merkle tree.
Definition merkleblock.h:74
std::vector< bool > vBits
node-is-parent-of-matched-txid bits
Definition merkleblock.h:62
bool fBad
flag set when encountering invalid data
Definition merkleblock.h:68
uint256 ExtractMatches(std::vector< uint256 > &vMatch, std::vector< size_t > &vnIndex)
Extract the matching txid's represented by this partial merkle tree and their respective indices with...
std::vector< uint256 > vHash
txids and internal hashes
Definition merkleblock.h:65
uint256 CalcHash(int height, size_t pos, const std::vector< uint256 > &vTxid)
Calculate the hash of a node in the merkle tree (at leaf level: the txid's themselves)
void TraverseAndBuild(int height, size_t pos, const std::vector< uint256 > &vTxid, const std::vector< bool > &vMatch)
Recursive function that traverses tree nodes, storing the data as bits and hashes.
256-bit opaque blob.
Definition uint256.h:129
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition hash.h:74
unsigned int nHeight
std::vector< uint8_t > BitsToBytes(const std::vector< bool > &bits)
std::vector< bool > BytesToBits(const std::vector< uint8_t > &bytes)
T GetRand(T nMax=std::numeric_limits< T >::max()) noexcept
Generate a uniform random integer of type T in the range [0..nMax) nMax defaults to std::numeric_limi...
Definition random.h:85
A TxId is the identifier of a transaction.
Definition txid.h:14
assert(!tx.IsCoinBase())