Bitcoin ABC 0.26.3
P2P Digital Currency
Loading...
Searching...
No Matches
scalar_4x64_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_SCALAR_REPR_IMPL_H
8#define SECP256K1_SCALAR_REPR_IMPL_H
9
10#include "modinv64_impl.h"
11
12/* Limbs of the secp256k1 order. */
13#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
14#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
15#define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
16#define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
17
18/* Limbs of 2^256 minus the secp256k1 order. */
19#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
20#define SECP256K1_N_C_1 (~SECP256K1_N_1)
21#define SECP256K1_N_C_2 (1)
22
23/* Limbs of half the secp256k1 order. */
24#define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
25#define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
26#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
27#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
28
30 r->d[0] = 0;
31 r->d[1] = 0;
32 r->d[2] = 0;
33 r->d[3] = 0;
34}
35
37 r->d[0] = v;
38 r->d[1] = 0;
39 r->d[2] = 0;
40 r->d[3] = 0;
41}
42
43SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
44 VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
45 return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
46}
47
48SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
49 VERIFY_CHECK(count < 32);
50 VERIFY_CHECK(offset + count <= 256);
51 if ((offset + count - 1) >> 6 == offset >> 6) {
53 } else {
54 VERIFY_CHECK((offset >> 6) + 1 < 4);
55 return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1);
56 }
57}
58
60 int yes = 0;
61 int no = 0;
62 no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
63 no |= (a->d[2] < SECP256K1_N_2);
64 yes |= (a->d[2] > SECP256K1_N_2) & ~no;
65 no |= (a->d[1] < SECP256K1_N_1);
66 yes |= (a->d[1] > SECP256K1_N_1) & ~no;
67 yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
68 return yes;
69}
70
75 r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
76 t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1;
77 r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
78 t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2;
79 r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
80 t += (uint64_t)r->d[3];
81 r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
82 return overflow;
83}
84
86 int overflow;
87 uint128_t t = (uint128_t)a->d[0] + b->d[0];
88 r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
89 t += (uint128_t)a->d[1] + b->d[1];
90 r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
91 t += (uint128_t)a->d[2] + b->d[2];
92 r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
93 t += (uint128_t)a->d[3] + b->d[3];
94 r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
96 VERIFY_CHECK(overflow == 0 || overflow == 1);
98 return overflow;
99}
100
101static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
102 uint128_t t;
103 VERIFY_CHECK(bit < 256);
104 bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
105 t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
106 r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
107 t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
108 r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
109 t += (uint128_t)r->d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
110 r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
111 t += (uint128_t)r->d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
112 r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
113#ifdef VERIFY
114 VERIFY_CHECK((t >> 64) == 0);
116#endif
117}
118
119static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
120 int over;
121 r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
122 r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
123 r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
124 r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
126 if (overflow) {
127 *overflow = over;
128 }
129}
130
131static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
132 bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
133 bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
134 bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
135 bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
136}
137
139 return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
140}
141
143 uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
144 uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
145 r->d[0] = t & nonzero; t >>= 64;
146 t += (uint128_t)(~a->d[1]) + SECP256K1_N_1;
147 r->d[1] = t & nonzero; t >>= 64;
148 t += (uint128_t)(~a->d[2]) + SECP256K1_N_2;
149 r->d[2] = t & nonzero; t >>= 64;
150 t += (uint128_t)(~a->d[3]) + SECP256K1_N_3;
151 r->d[3] = t & nonzero;
152}
153
155 return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
156}
157
159 int yes = 0;
160 int no = 0;
161 no |= (a->d[3] < SECP256K1_N_H_3);
162 yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
163 no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
164 no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
165 yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
166 yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
167 return yes;
168}
169
171 /* If we are flag = 0, mask = 00...00 and this is a no-op;
172 * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
173 uint64_t mask = !flag - 1;
175 uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
176 r->d[0] = t & nonzero; t >>= 64;
177 t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
178 r->d[1] = t & nonzero; t >>= 64;
179 t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
180 r->d[2] = t & nonzero; t >>= 64;
181 t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
182 r->d[3] = t & nonzero;
183 return 2 * (mask == 0) - 1;
184}
185
186/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
187
189#define muladd(a,b) { \
190 uint64_t tl, th; \
191 { \
192 uint128_t t = (uint128_t)a * b; \
193 th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
194 tl = t; \
195 } \
196 c0 += tl; /* overflow is handled on the next line */ \
197 th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
198 c1 += th; /* overflow is handled on the next line */ \
199 c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \
200 VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
201}
202
204#define muladd_fast(a,b) { \
205 uint64_t tl, th; \
206 { \
207 uint128_t t = (uint128_t)a * b; \
208 th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
209 tl = t; \
210 } \
211 c0 += tl; /* overflow is handled on the next line */ \
212 th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
213 c1 += th; /* never overflows by contract (verified in the next line) */ \
214 VERIFY_CHECK(c1 >= th); \
215}
216
218#define sumadd(a) { \
219 unsigned int over; \
220 c0 += (a); /* overflow is handled on the next line */ \
221 over = (c0 < (a)); \
222 c1 += over; /* overflow is handled on the next line */ \
223 c2 += (c1 < over); /* never overflows by contract */ \
224}
225
227#define sumadd_fast(a) { \
228 c0 += (a); /* overflow is handled on the next line */ \
229 c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \
230 VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
231 VERIFY_CHECK(c2 == 0); \
232}
233
235#define extract(n) { \
236 (n) = c0; \
237 c0 = c1; \
238 c1 = c2; \
239 c2 = 0; \
240}
241
243#define extract_fast(n) { \
244 (n) = c0; \
245 c0 = c1; \
246 c1 = 0; \
247 VERIFY_CHECK(c2 == 0); \
248}
249
251#ifdef USE_ASM_X86_64
252 /* Reduce 512 bits into 385. */
253 uint64_t m0, m1, m2, m3, m4, m5, m6;
254 uint64_t p0, p1, p2, p3, p4;
255 uint64_t c;
256
258 /* Preload. */
259 "movq 32(%%rsi), %%r11\n"
260 "movq 40(%%rsi), %%r12\n"
261 "movq 48(%%rsi), %%r13\n"
262 "movq 56(%%rsi), %%r14\n"
263 /* Initialize r8,r9,r10 */
264 "movq 0(%%rsi), %%r8\n"
265 "xorq %%r9, %%r9\n"
266 "xorq %%r10, %%r10\n"
267 /* (r8,r9) += n0 * c0 */
268 "movq %8, %%rax\n"
269 "mulq %%r11\n"
270 "addq %%rax, %%r8\n"
271 "adcq %%rdx, %%r9\n"
272 /* extract m0 */
273 "movq %%r8, %q0\n"
274 "xorq %%r8, %%r8\n"
275 /* (r9,r10) += l1 */
276 "addq 8(%%rsi), %%r9\n"
277 "adcq $0, %%r10\n"
278 /* (r9,r10,r8) += n1 * c0 */
279 "movq %8, %%rax\n"
280 "mulq %%r12\n"
281 "addq %%rax, %%r9\n"
282 "adcq %%rdx, %%r10\n"
283 "adcq $0, %%r8\n"
284 /* (r9,r10,r8) += n0 * c1 */
285 "movq %9, %%rax\n"
286 "mulq %%r11\n"
287 "addq %%rax, %%r9\n"
288 "adcq %%rdx, %%r10\n"
289 "adcq $0, %%r8\n"
290 /* extract m1 */
291 "movq %%r9, %q1\n"
292 "xorq %%r9, %%r9\n"
293 /* (r10,r8,r9) += l2 */
294 "addq 16(%%rsi), %%r10\n"
295 "adcq $0, %%r8\n"
296 "adcq $0, %%r9\n"
297 /* (r10,r8,r9) += n2 * c0 */
298 "movq %8, %%rax\n"
299 "mulq %%r13\n"
300 "addq %%rax, %%r10\n"
301 "adcq %%rdx, %%r8\n"
302 "adcq $0, %%r9\n"
303 /* (r10,r8,r9) += n1 * c1 */
304 "movq %9, %%rax\n"
305 "mulq %%r12\n"
306 "addq %%rax, %%r10\n"
307 "adcq %%rdx, %%r8\n"
308 "adcq $0, %%r9\n"
309 /* (r10,r8,r9) += n0 */
310 "addq %%r11, %%r10\n"
311 "adcq $0, %%r8\n"
312 "adcq $0, %%r9\n"
313 /* extract m2 */
314 "movq %%r10, %q2\n"
315 "xorq %%r10, %%r10\n"
316 /* (r8,r9,r10) += l3 */
317 "addq 24(%%rsi), %%r8\n"
318 "adcq $0, %%r9\n"
319 "adcq $0, %%r10\n"
320 /* (r8,r9,r10) += n3 * c0 */
321 "movq %8, %%rax\n"
322 "mulq %%r14\n"
323 "addq %%rax, %%r8\n"
324 "adcq %%rdx, %%r9\n"
325 "adcq $0, %%r10\n"
326 /* (r8,r9,r10) += n2 * c1 */
327 "movq %9, %%rax\n"
328 "mulq %%r13\n"
329 "addq %%rax, %%r8\n"
330 "adcq %%rdx, %%r9\n"
331 "adcq $0, %%r10\n"
332 /* (r8,r9,r10) += n1 */
333 "addq %%r12, %%r8\n"
334 "adcq $0, %%r9\n"
335 "adcq $0, %%r10\n"
336 /* extract m3 */
337 "movq %%r8, %q3\n"
338 "xorq %%r8, %%r8\n"
339 /* (r9,r10,r8) += n3 * c1 */
340 "movq %9, %%rax\n"
341 "mulq %%r14\n"
342 "addq %%rax, %%r9\n"
343 "adcq %%rdx, %%r10\n"
344 "adcq $0, %%r8\n"
345 /* (r9,r10,r8) += n2 */
346 "addq %%r13, %%r9\n"
347 "adcq $0, %%r10\n"
348 "adcq $0, %%r8\n"
349 /* extract m4 */
350 "movq %%r9, %q4\n"
351 /* (r10,r8) += n3 */
352 "addq %%r14, %%r10\n"
353 "adcq $0, %%r8\n"
354 /* extract m5 */
355 "movq %%r10, %q5\n"
356 /* extract m6 */
357 "movq %%r8, %q6\n"
358 : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
359 : "S"(l), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
360 : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc");
361
362 /* Reduce 385 bits into 258. */
364 /* Preload */
365 "movq %q9, %%r11\n"
366 "movq %q10, %%r12\n"
367 "movq %q11, %%r13\n"
368 /* Initialize (r8,r9,r10) */
369 "movq %q5, %%r8\n"
370 "xorq %%r9, %%r9\n"
371 "xorq %%r10, %%r10\n"
372 /* (r8,r9) += m4 * c0 */
373 "movq %12, %%rax\n"
374 "mulq %%r11\n"
375 "addq %%rax, %%r8\n"
376 "adcq %%rdx, %%r9\n"
377 /* extract p0 */
378 "movq %%r8, %q0\n"
379 "xorq %%r8, %%r8\n"
380 /* (r9,r10) += m1 */
381 "addq %q6, %%r9\n"
382 "adcq $0, %%r10\n"
383 /* (r9,r10,r8) += m5 * c0 */
384 "movq %12, %%rax\n"
385 "mulq %%r12\n"
386 "addq %%rax, %%r9\n"
387 "adcq %%rdx, %%r10\n"
388 "adcq $0, %%r8\n"
389 /* (r9,r10,r8) += m4 * c1 */
390 "movq %13, %%rax\n"
391 "mulq %%r11\n"
392 "addq %%rax, %%r9\n"
393 "adcq %%rdx, %%r10\n"
394 "adcq $0, %%r8\n"
395 /* extract p1 */
396 "movq %%r9, %q1\n"
397 "xorq %%r9, %%r9\n"
398 /* (r10,r8,r9) += m2 */
399 "addq %q7, %%r10\n"
400 "adcq $0, %%r8\n"
401 "adcq $0, %%r9\n"
402 /* (r10,r8,r9) += m6 * c0 */
403 "movq %12, %%rax\n"
404 "mulq %%r13\n"
405 "addq %%rax, %%r10\n"
406 "adcq %%rdx, %%r8\n"
407 "adcq $0, %%r9\n"
408 /* (r10,r8,r9) += m5 * c1 */
409 "movq %13, %%rax\n"
410 "mulq %%r12\n"
411 "addq %%rax, %%r10\n"
412 "adcq %%rdx, %%r8\n"
413 "adcq $0, %%r9\n"
414 /* (r10,r8,r9) += m4 */
415 "addq %%r11, %%r10\n"
416 "adcq $0, %%r8\n"
417 "adcq $0, %%r9\n"
418 /* extract p2 */
419 "movq %%r10, %q2\n"
420 /* (r8,r9) += m3 */
421 "addq %q8, %%r8\n"
422 "adcq $0, %%r9\n"
423 /* (r8,r9) += m6 * c1 */
424 "movq %13, %%rax\n"
425 "mulq %%r13\n"
426 "addq %%rax, %%r8\n"
427 "adcq %%rdx, %%r9\n"
428 /* (r8,r9) += m5 */
429 "addq %%r12, %%r8\n"
430 "adcq $0, %%r9\n"
431 /* extract p3 */
432 "movq %%r8, %q3\n"
433 /* (r9) += m6 */
434 "addq %%r13, %%r9\n"
435 /* extract p4 */
436 "movq %%r9, %q4\n"
437 : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4)
438 : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
439 : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc");
440
441 /* Reduce 258 bits into 256. */
443 /* Preload */
444 "movq %q5, %%r10\n"
445 /* (rax,rdx) = p4 * c0 */
446 "movq %7, %%rax\n"
447 "mulq %%r10\n"
448 /* (rax,rdx) += p0 */
449 "addq %q1, %%rax\n"
450 "adcq $0, %%rdx\n"
451 /* extract r0 */
452 "movq %%rax, 0(%q6)\n"
453 /* Move to (r8,r9) */
454 "movq %%rdx, %%r8\n"
455 "xorq %%r9, %%r9\n"
456 /* (r8,r9) += p1 */
457 "addq %q2, %%r8\n"
458 "adcq $0, %%r9\n"
459 /* (r8,r9) += p4 * c1 */
460 "movq %8, %%rax\n"
461 "mulq %%r10\n"
462 "addq %%rax, %%r8\n"
463 "adcq %%rdx, %%r9\n"
464 /* Extract r1 */
465 "movq %%r8, 8(%q6)\n"
466 "xorq %%r8, %%r8\n"
467 /* (r9,r8) += p4 */
468 "addq %%r10, %%r9\n"
469 "adcq $0, %%r8\n"
470 /* (r9,r8) += p2 */
471 "addq %q3, %%r9\n"
472 "adcq $0, %%r8\n"
473 /* Extract r2 */
474 "movq %%r9, 16(%q6)\n"
475 "xorq %%r9, %%r9\n"
476 /* (r8,r9) += p3 */
477 "addq %q4, %%r8\n"
478 "adcq $0, %%r9\n"
479 /* Extract r3 */
480 "movq %%r8, 24(%q6)\n"
481 /* Extract c */
482 "movq %%r9, %q0\n"
483 : "=g"(c)
484 : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
485 : "rax", "rdx", "r8", "r9", "r10", "cc", "memory");
486#else
487 uint128_t c;
488 uint64_t c0, c1, c2;
489 uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
490 uint64_t m0, m1, m2, m3, m4, m5;
491 uint32_t m6;
492 uint64_t p0, p1, p2, p3;
493 uint32_t p4;
494
495 /* Reduce 512 bits into 385. */
496 /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */
497 c0 = l[0]; c1 = 0; c2 = 0;
500 sumadd_fast(l[1]);
503 extract(m1);
504 sumadd(l[2]);
507 sumadd(n0);
508 extract(m2);
509 sumadd(l[3]);
512 sumadd(n1);
513 extract(m3);
515 sumadd(n2);
516 extract(m4);
519 VERIFY_CHECK(c0 <= 1);
520 m6 = c0;
521
522 /* Reduce 385 bits into 258. */
523 /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */
524 c0 = m0; c1 = 0; c2 = 0;
530 extract(p1);
531 sumadd(m2);
534 sumadd(m4);
535 extract(p2);
540 p4 = c0 + m6;
541 VERIFY_CHECK(p4 <= 2);
542
543 /* Reduce 258 bits into 256. */
544 /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */
546 r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
548 r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
549 c += p2 + (uint128_t)p4;
550 r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
551 c += p3;
552 r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
553#endif
554
555 /* Final reduction of r. */
557}
558
560#ifdef USE_ASM_X86_64
561 const uint64_t *pb = b->d;
563 /* Preload */
564 "movq 0(%%rdi), %%r15\n"
565 "movq 8(%%rdi), %%rbx\n"
566 "movq 16(%%rdi), %%rcx\n"
567 "movq 0(%%rdx), %%r11\n"
568 "movq 8(%%rdx), %%r12\n"
569 "movq 16(%%rdx), %%r13\n"
570 "movq 24(%%rdx), %%r14\n"
571 /* (rax,rdx) = a0 * b0 */
572 "movq %%r15, %%rax\n"
573 "mulq %%r11\n"
574 /* Extract l0 */
575 "movq %%rax, 0(%%rsi)\n"
576 /* (r8,r9,r10) = (rdx) */
577 "movq %%rdx, %%r8\n"
578 "xorq %%r9, %%r9\n"
579 "xorq %%r10, %%r10\n"
580 /* (r8,r9,r10) += a0 * b1 */
581 "movq %%r15, %%rax\n"
582 "mulq %%r12\n"
583 "addq %%rax, %%r8\n"
584 "adcq %%rdx, %%r9\n"
585 "adcq $0, %%r10\n"
586 /* (r8,r9,r10) += a1 * b0 */
587 "movq %%rbx, %%rax\n"
588 "mulq %%r11\n"
589 "addq %%rax, %%r8\n"
590 "adcq %%rdx, %%r9\n"
591 "adcq $0, %%r10\n"
592 /* Extract l1 */
593 "movq %%r8, 8(%%rsi)\n"
594 "xorq %%r8, %%r8\n"
595 /* (r9,r10,r8) += a0 * b2 */
596 "movq %%r15, %%rax\n"
597 "mulq %%r13\n"
598 "addq %%rax, %%r9\n"
599 "adcq %%rdx, %%r10\n"
600 "adcq $0, %%r8\n"
601 /* (r9,r10,r8) += a1 * b1 */
602 "movq %%rbx, %%rax\n"
603 "mulq %%r12\n"
604 "addq %%rax, %%r9\n"
605 "adcq %%rdx, %%r10\n"
606 "adcq $0, %%r8\n"
607 /* (r9,r10,r8) += a2 * b0 */
608 "movq %%rcx, %%rax\n"
609 "mulq %%r11\n"
610 "addq %%rax, %%r9\n"
611 "adcq %%rdx, %%r10\n"
612 "adcq $0, %%r8\n"
613 /* Extract l2 */
614 "movq %%r9, 16(%%rsi)\n"
615 "xorq %%r9, %%r9\n"
616 /* (r10,r8,r9) += a0 * b3 */
617 "movq %%r15, %%rax\n"
618 "mulq %%r14\n"
619 "addq %%rax, %%r10\n"
620 "adcq %%rdx, %%r8\n"
621 "adcq $0, %%r9\n"
622 /* Preload a3 */
623 "movq 24(%%rdi), %%r15\n"
624 /* (r10,r8,r9) += a1 * b2 */
625 "movq %%rbx, %%rax\n"
626 "mulq %%r13\n"
627 "addq %%rax, %%r10\n"
628 "adcq %%rdx, %%r8\n"
629 "adcq $0, %%r9\n"
630 /* (r10,r8,r9) += a2 * b1 */
631 "movq %%rcx, %%rax\n"
632 "mulq %%r12\n"
633 "addq %%rax, %%r10\n"
634 "adcq %%rdx, %%r8\n"
635 "adcq $0, %%r9\n"
636 /* (r10,r8,r9) += a3 * b0 */
637 "movq %%r15, %%rax\n"
638 "mulq %%r11\n"
639 "addq %%rax, %%r10\n"
640 "adcq %%rdx, %%r8\n"
641 "adcq $0, %%r9\n"
642 /* Extract l3 */
643 "movq %%r10, 24(%%rsi)\n"
644 "xorq %%r10, %%r10\n"
645 /* (r8,r9,r10) += a1 * b3 */
646 "movq %%rbx, %%rax\n"
647 "mulq %%r14\n"
648 "addq %%rax, %%r8\n"
649 "adcq %%rdx, %%r9\n"
650 "adcq $0, %%r10\n"
651 /* (r8,r9,r10) += a2 * b2 */
652 "movq %%rcx, %%rax\n"
653 "mulq %%r13\n"
654 "addq %%rax, %%r8\n"
655 "adcq %%rdx, %%r9\n"
656 "adcq $0, %%r10\n"
657 /* (r8,r9,r10) += a3 * b1 */
658 "movq %%r15, %%rax\n"
659 "mulq %%r12\n"
660 "addq %%rax, %%r8\n"
661 "adcq %%rdx, %%r9\n"
662 "adcq $0, %%r10\n"
663 /* Extract l4 */
664 "movq %%r8, 32(%%rsi)\n"
665 "xorq %%r8, %%r8\n"
666 /* (r9,r10,r8) += a2 * b3 */
667 "movq %%rcx, %%rax\n"
668 "mulq %%r14\n"
669 "addq %%rax, %%r9\n"
670 "adcq %%rdx, %%r10\n"
671 "adcq $0, %%r8\n"
672 /* (r9,r10,r8) += a3 * b2 */
673 "movq %%r15, %%rax\n"
674 "mulq %%r13\n"
675 "addq %%rax, %%r9\n"
676 "adcq %%rdx, %%r10\n"
677 "adcq $0, %%r8\n"
678 /* Extract l5 */
679 "movq %%r9, 40(%%rsi)\n"
680 /* (r10,r8) += a3 * b3 */
681 "movq %%r15, %%rax\n"
682 "mulq %%r14\n"
683 "addq %%rax, %%r10\n"
684 "adcq %%rdx, %%r8\n"
685 /* Extract l6 */
686 "movq %%r10, 48(%%rsi)\n"
687 /* Extract l7 */
688 "movq %%r8, 56(%%rsi)\n"
689 : "+d"(pb)
690 : "S"(l), "D"(a->d)
691 : "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory");
692#else
693 /* 160 bit accumulator. */
694 uint64_t c0 = 0, c1 = 0;
695 uint32_t c2 = 0;
696
697 /* l[0..7] = a[0..3] * b[0..3]. */
698 muladd_fast(a->d[0], b->d[0]);
699 extract_fast(l[0]);
700 muladd(a->d[0], b->d[1]);
701 muladd(a->d[1], b->d[0]);
702 extract(l[1]);
703 muladd(a->d[0], b->d[2]);
704 muladd(a->d[1], b->d[1]);
705 muladd(a->d[2], b->d[0]);
706 extract(l[2]);
707 muladd(a->d[0], b->d[3]);
708 muladd(a->d[1], b->d[2]);
709 muladd(a->d[2], b->d[1]);
710 muladd(a->d[3], b->d[0]);
711 extract(l[3]);
712 muladd(a->d[1], b->d[3]);
713 muladd(a->d[2], b->d[2]);
714 muladd(a->d[3], b->d[1]);
715 extract(l[4]);
716 muladd(a->d[2], b->d[3]);
717 muladd(a->d[3], b->d[2]);
718 extract(l[5]);
719 muladd_fast(a->d[3], b->d[3]);
720 extract_fast(l[6]);
721 VERIFY_CHECK(c1 == 0);
722 l[7] = c0;
723#endif
724}
725
726#undef sumadd
727#undef sumadd_fast
728#undef muladd
729#undef muladd_fast
730#undef extract
731#undef extract_fast
732
738
740 int ret;
741 VERIFY_CHECK(n > 0);
742 VERIFY_CHECK(n < 16);
743 ret = r->d[0] & ((1 << n) - 1);
744 r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n));
745 r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n));
746 r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n));
747 r->d[3] = (r->d[3] >> n);
748 return ret;
749}
750
752 r1->d[0] = k->d[0];
753 r1->d[1] = k->d[1];
754 r1->d[2] = 0;
755 r1->d[3] = 0;
756 r2->d[0] = k->d[2];
757 r2->d[1] = k->d[3];
758 r2->d[2] = 0;
759 r2->d[3] = 0;
760}
761
763 return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
764}
765
767 uint64_t l[8];
768 unsigned int shiftlimbs;
769 unsigned int shiftlow;
770 unsigned int shifthigh;
771 VERIFY_CHECK(shift >= 256);
773 shiftlimbs = shift >> 6;
774 shiftlow = shift & 0x3F;
775 shifthigh = 64 - shiftlow;
776 r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
777 r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
778 r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
779 r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
780 secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
781}
782
785 VG_CHECK_VERIFY(r->d, sizeof(r->d));
786 mask0 = flag + ~((uint64_t)0);
787 mask1 = ~mask0;
788 r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
789 r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1);
790 r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1);
791 r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
792}
793
795 const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
796
797 /* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
798 * have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
799 */
800 VERIFY_CHECK(a0 >> 62 == 0);
801 VERIFY_CHECK(a1 >> 62 == 0);
802 VERIFY_CHECK(a2 >> 62 == 0);
803 VERIFY_CHECK(a3 >> 62 == 0);
804 VERIFY_CHECK(a4 >> 8 == 0);
805
806 r->d[0] = a0 | a1 << 62;
807 r->d[1] = a1 >> 2 | a2 << 60;
808 r->d[2] = a2 >> 4 | a3 << 58;
809 r->d[3] = a3 >> 6 | a4 << 56;
810
811#ifdef VERIFY
813#endif
814}
815
817 const uint64_t M62 = UINT64_MAX >> 2;
818 const uint64_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3];
819
820#ifdef VERIFY
822#endif
823
824 r->v[0] = a0 & M62;
825 r->v[1] = (a0 >> 62 | a1 << 2) & M62;
826 r->v[2] = (a1 >> 60 | a2 << 4) & M62;
827 r->v[3] = (a2 >> 58 | a3 << 6) & M62;
828 r->v[4] = a3 >> 56;
829}
830
832 {{0x3FD25E8CD0364141LL, 0x2ABB739ABD2280EELL, -0x15LL, 0, 256}},
833 0x34F20099AA774EC1LL
834};
835
849
863
865 return !(a->d[0] & 1);
866}
867
868#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
T GetRand(T nMax=std::numeric_limits< T >::max()) noexcept
Generate a uniform random integer of type T in the range [0..nMax) nMax defaults to std::numeric_limi...
Definition random.h:85
static SECP256K1_INLINE int secp256k1_scalar_is_even(const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_check_overflow(const secp256k1_scalar *a)
static SECP256K1_INLINE void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift)
#define SECP256K1_N_3
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
static SECP256K1_INLINE unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static SECP256K1_INLINE void secp256k1_scalar_clear(secp256k1_scalar *r)
#define extract(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define SECP256K1_N_C_2
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow)
#define SECP256K1_N_C_1
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x)
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_scalar
#define sumadd_fast(a)
Add a to the number defined by (c0,c1).
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
#define SECP256K1_N_1
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
#define SECP256K1_N_2
#define SECP256K1_N_H_2
static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a)
static SECP256K1_INLINE void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b)
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x)
#define SECP256K1_N_C_0
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag)
#define extract_fast(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define muladd(a, b)
Add a*b to the number defined by (c0,c1,c2).
static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a)
#define SECP256K1_N_H_0
static SECP256K1_INLINE int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
#define sumadd(a)
Add a to the number defined by (c0,c1,c2).
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag)
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
#define SECP256K1_N_H_1
static SECP256K1_INLINE int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow)
#define SECP256K1_N_0
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
static SECP256K1_INLINE unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
#define SECP256K1_N_H_3
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag)
#define muladd_fast(a, b)
Add a*b to the number defined by (c0,c1).
static SECP256K1_INLINE int secp256k1_scalar_is_one(const secp256k1_scalar *a)
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n)
#define VG_CHECK_VERIFY(x, y)
Definition util.h:88
#define VERIFY_CHECK(cond)
Definition util.h:68
#define SECP256K1_INLINE
Definition secp256k1.h:127
A scalar modulo the group order of the secp256k1 curve.
Definition scalar_4x64.h:13
uint64_t d[4]
Definition scalar_4x64.h:14
static int count
Definition tests.c:31