Bitcoin ABC  0.26.3
P2P Digital Currency
scalar_8x32_impl.h
Go to the documentation of this file.
1 /***********************************************************************
2  * Copyright (c) 2014 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5  ***********************************************************************/
6 
7 #ifndef SECP256K1_SCALAR_REPR_IMPL_H
8 #define SECP256K1_SCALAR_REPR_IMPL_H
9 
10 #include "modinv32_impl.h"
11 
12 /* Limbs of the secp256k1 order. */
13 #define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
14 #define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL)
15 #define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL)
16 #define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL)
17 #define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL)
18 #define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL)
19 #define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL)
20 #define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL)
21 
22 /* Limbs of 2^256 minus the secp256k1 order. */
23 #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
24 #define SECP256K1_N_C_1 (~SECP256K1_N_1)
25 #define SECP256K1_N_C_2 (~SECP256K1_N_2)
26 #define SECP256K1_N_C_3 (~SECP256K1_N_3)
27 #define SECP256K1_N_C_4 (1)
28 
29 /* Limbs of half the secp256k1 order. */
30 #define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL)
31 #define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL)
32 #define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL)
33 #define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL)
34 #define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL)
35 #define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL)
36 #define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
37 #define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)
38 
40  r->d[0] = 0;
41  r->d[1] = 0;
42  r->d[2] = 0;
43  r->d[3] = 0;
44  r->d[4] = 0;
45  r->d[5] = 0;
46  r->d[6] = 0;
47  r->d[7] = 0;
48 }
49 
51  r->d[0] = v;
52  r->d[1] = 0;
53  r->d[2] = 0;
54  r->d[3] = 0;
55  r->d[4] = 0;
56  r->d[5] = 0;
57  r->d[6] = 0;
58  r->d[7] = 0;
59 }
60 
61 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
62  VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
63  return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1);
64 }
65 
66 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
67  VERIFY_CHECK(count < 32);
68  VERIFY_CHECK(offset + count <= 256);
69  if ((offset + count - 1) >> 5 == offset >> 5) {
70  return secp256k1_scalar_get_bits(a, offset, count);
71  } else {
72  VERIFY_CHECK((offset >> 5) + 1 < 8);
73  return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & ((((uint32_t)1) << count) - 1);
74  }
75 }
76 
78  int yes = 0;
79  int no = 0;
80  no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
81  no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */
82  no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */
83  no |= (a->d[4] < SECP256K1_N_4);
84  yes |= (a->d[4] > SECP256K1_N_4) & ~no;
85  no |= (a->d[3] < SECP256K1_N_3) & ~yes;
86  yes |= (a->d[3] > SECP256K1_N_3) & ~no;
87  no |= (a->d[2] < SECP256K1_N_2) & ~yes;
88  yes |= (a->d[2] > SECP256K1_N_2) & ~no;
89  no |= (a->d[1] < SECP256K1_N_1) & ~yes;
90  yes |= (a->d[1] > SECP256K1_N_1) & ~no;
91  yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
92  return yes;
93 }
94 
95 SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
96  uint64_t t;
97  VERIFY_CHECK(overflow <= 1);
98  t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
99  r->d[0] = t & 0xFFFFFFFFUL; t >>= 32;
100  t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1;
101  r->d[1] = t & 0xFFFFFFFFUL; t >>= 32;
102  t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2;
103  r->d[2] = t & 0xFFFFFFFFUL; t >>= 32;
104  t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3;
105  r->d[3] = t & 0xFFFFFFFFUL; t >>= 32;
106  t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4;
107  r->d[4] = t & 0xFFFFFFFFUL; t >>= 32;
108  t += (uint64_t)r->d[5];
109  r->d[5] = t & 0xFFFFFFFFUL; t >>= 32;
110  t += (uint64_t)r->d[6];
111  r->d[6] = t & 0xFFFFFFFFUL; t >>= 32;
112  t += (uint64_t)r->d[7];
113  r->d[7] = t & 0xFFFFFFFFUL;
114  return overflow;
115 }
116 
118  int overflow;
119  uint64_t t = (uint64_t)a->d[0] + b->d[0];
120  r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
121  t += (uint64_t)a->d[1] + b->d[1];
122  r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
123  t += (uint64_t)a->d[2] + b->d[2];
124  r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
125  t += (uint64_t)a->d[3] + b->d[3];
126  r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
127  t += (uint64_t)a->d[4] + b->d[4];
128  r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
129  t += (uint64_t)a->d[5] + b->d[5];
130  r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
131  t += (uint64_t)a->d[6] + b->d[6];
132  r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
133  t += (uint64_t)a->d[7] + b->d[7];
134  r->d[7] = t & 0xFFFFFFFFULL; t >>= 32;
135  overflow = t + secp256k1_scalar_check_overflow(r);
136  VERIFY_CHECK(overflow == 0 || overflow == 1);
137  secp256k1_scalar_reduce(r, overflow);
138  return overflow;
139 }
140 
141 static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
142  uint64_t t;
143  VERIFY_CHECK(bit < 256);
144  bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
145  t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
146  r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
147  t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
148  r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
149  t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F));
150  r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
151  t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F));
152  r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
153  t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F));
154  r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
155  t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F));
156  r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
157  t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F));
158  r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
159  t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
160  r->d[7] = t & 0xFFFFFFFFULL;
161 #ifdef VERIFY
162  VERIFY_CHECK((t >> 32) == 0);
164 #endif
165 }
166 
167 static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
168  int over;
169  r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
170  r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
171  r->d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24;
172  r->d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24;
173  r->d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24;
174  r->d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24;
175  r->d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24;
176  r->d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24;
178  if (overflow) {
179  *overflow = over;
180  }
181 }
182 
183 static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
184  bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
185  bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
186  bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
187  bin[12] = a->d[4] >> 24; bin[13] = a->d[4] >> 16; bin[14] = a->d[4] >> 8; bin[15] = a->d[4];
188  bin[16] = a->d[3] >> 24; bin[17] = a->d[3] >> 16; bin[18] = a->d[3] >> 8; bin[19] = a->d[3];
189  bin[20] = a->d[2] >> 24; bin[21] = a->d[2] >> 16; bin[22] = a->d[2] >> 8; bin[23] = a->d[2];
190  bin[24] = a->d[1] >> 24; bin[25] = a->d[1] >> 16; bin[26] = a->d[1] >> 8; bin[27] = a->d[1];
191  bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
192 }
193 
195  return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
196 }
197 
199  uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
200  uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
201  r->d[0] = t & nonzero; t >>= 32;
202  t += (uint64_t)(~a->d[1]) + SECP256K1_N_1;
203  r->d[1] = t & nonzero; t >>= 32;
204  t += (uint64_t)(~a->d[2]) + SECP256K1_N_2;
205  r->d[2] = t & nonzero; t >>= 32;
206  t += (uint64_t)(~a->d[3]) + SECP256K1_N_3;
207  r->d[3] = t & nonzero; t >>= 32;
208  t += (uint64_t)(~a->d[4]) + SECP256K1_N_4;
209  r->d[4] = t & nonzero; t >>= 32;
210  t += (uint64_t)(~a->d[5]) + SECP256K1_N_5;
211  r->d[5] = t & nonzero; t >>= 32;
212  t += (uint64_t)(~a->d[6]) + SECP256K1_N_6;
213  r->d[6] = t & nonzero; t >>= 32;
214  t += (uint64_t)(~a->d[7]) + SECP256K1_N_7;
215  r->d[7] = t & nonzero;
216 }
217 
219  return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
220 }
221 
223  int yes = 0;
224  int no = 0;
225  no |= (a->d[7] < SECP256K1_N_H_7);
226  yes |= (a->d[7] > SECP256K1_N_H_7) & ~no;
227  no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */
228  no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */
229  no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */
230  no |= (a->d[3] < SECP256K1_N_H_3) & ~yes;
231  yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
232  no |= (a->d[2] < SECP256K1_N_H_2) & ~yes;
233  yes |= (a->d[2] > SECP256K1_N_H_2) & ~no;
234  no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
235  yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
236  yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
237  return yes;
238 }
239 
241  /* If we are flag = 0, mask = 00...00 and this is a no-op;
242  * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
243  uint32_t mask = !flag - 1;
244  uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
245  uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
246  r->d[0] = t & nonzero; t >>= 32;
247  t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
248  r->d[1] = t & nonzero; t >>= 32;
249  t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
250  r->d[2] = t & nonzero; t >>= 32;
251  t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
252  r->d[3] = t & nonzero; t >>= 32;
253  t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask);
254  r->d[4] = t & nonzero; t >>= 32;
255  t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask);
256  r->d[5] = t & nonzero; t >>= 32;
257  t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask);
258  r->d[6] = t & nonzero; t >>= 32;
259  t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
260  r->d[7] = t & nonzero;
261  return 2 * (mask == 0) - 1;
262 }
263 
264 
265 /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
266 
268 #define muladd(a,b) { \
269  uint32_t tl, th; \
270  { \
271  uint64_t t = (uint64_t)a * b; \
272  th = t >> 32; /* at most 0xFFFFFFFE */ \
273  tl = t; \
274  } \
275  c0 += tl; /* overflow is handled on the next line */ \
276  th += (c0 < tl); /* at most 0xFFFFFFFF */ \
277  c1 += th; /* overflow is handled on the next line */ \
278  c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \
279  VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
280 }
281 
283 #define muladd_fast(a,b) { \
284  uint32_t tl, th; \
285  { \
286  uint64_t t = (uint64_t)a * b; \
287  th = t >> 32; /* at most 0xFFFFFFFE */ \
288  tl = t; \
289  } \
290  c0 += tl; /* overflow is handled on the next line */ \
291  th += (c0 < tl); /* at most 0xFFFFFFFF */ \
292  c1 += th; /* never overflows by contract (verified in the next line) */ \
293  VERIFY_CHECK(c1 >= th); \
294 }
295 
297 #define sumadd(a) { \
298  unsigned int over; \
299  c0 += (a); /* overflow is handled on the next line */ \
300  over = (c0 < (a)); \
301  c1 += over; /* overflow is handled on the next line */ \
302  c2 += (c1 < over); /* never overflows by contract */ \
303 }
304 
306 #define sumadd_fast(a) { \
307  c0 += (a); /* overflow is handled on the next line */ \
308  c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \
309  VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
310  VERIFY_CHECK(c2 == 0); \
311 }
312 
314 #define extract(n) { \
315  (n) = c0; \
316  c0 = c1; \
317  c1 = c2; \
318  c2 = 0; \
319 }
320 
322 #define extract_fast(n) { \
323  (n) = c0; \
324  c0 = c1; \
325  c1 = 0; \
326  VERIFY_CHECK(c2 == 0); \
327 }
328 
329 static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
330  uint64_t c;
331  uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
332  uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
333  uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8;
334 
335  /* 96 bit accumulator. */
336  uint32_t c0, c1, c2;
337 
338  /* Reduce 512 bits into 385. */
339  /* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */
340  c0 = l[0]; c1 = 0; c2 = 0;
342  extract_fast(m0);
343  sumadd_fast(l[1]);
344  muladd(n1, SECP256K1_N_C_0);
345  muladd(n0, SECP256K1_N_C_1);
346  extract(m1);
347  sumadd(l[2]);
348  muladd(n2, SECP256K1_N_C_0);
349  muladd(n1, SECP256K1_N_C_1);
350  muladd(n0, SECP256K1_N_C_2);
351  extract(m2);
352  sumadd(l[3]);
353  muladd(n3, SECP256K1_N_C_0);
354  muladd(n2, SECP256K1_N_C_1);
355  muladd(n1, SECP256K1_N_C_2);
356  muladd(n0, SECP256K1_N_C_3);
357  extract(m3);
358  sumadd(l[4]);
359  muladd(n4, SECP256K1_N_C_0);
360  muladd(n3, SECP256K1_N_C_1);
361  muladd(n2, SECP256K1_N_C_2);
362  muladd(n1, SECP256K1_N_C_3);
363  sumadd(n0);
364  extract(m4);
365  sumadd(l[5]);
366  muladd(n5, SECP256K1_N_C_0);
367  muladd(n4, SECP256K1_N_C_1);
368  muladd(n3, SECP256K1_N_C_2);
369  muladd(n2, SECP256K1_N_C_3);
370  sumadd(n1);
371  extract(m5);
372  sumadd(l[6]);
373  muladd(n6, SECP256K1_N_C_0);
374  muladd(n5, SECP256K1_N_C_1);
375  muladd(n4, SECP256K1_N_C_2);
376  muladd(n3, SECP256K1_N_C_3);
377  sumadd(n2);
378  extract(m6);
379  sumadd(l[7]);
380  muladd(n7, SECP256K1_N_C_0);
381  muladd(n6, SECP256K1_N_C_1);
382  muladd(n5, SECP256K1_N_C_2);
383  muladd(n4, SECP256K1_N_C_3);
384  sumadd(n3);
385  extract(m7);
386  muladd(n7, SECP256K1_N_C_1);
387  muladd(n6, SECP256K1_N_C_2);
388  muladd(n5, SECP256K1_N_C_3);
389  sumadd(n4);
390  extract(m8);
391  muladd(n7, SECP256K1_N_C_2);
392  muladd(n6, SECP256K1_N_C_3);
393  sumadd(n5);
394  extract(m9);
395  muladd(n7, SECP256K1_N_C_3);
396  sumadd(n6);
397  extract(m10);
398  sumadd_fast(n7);
399  extract_fast(m11);
400  VERIFY_CHECK(c0 <= 1);
401  m12 = c0;
402 
403  /* Reduce 385 bits into 258. */
404  /* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */
405  c0 = m0; c1 = 0; c2 = 0;
407  extract_fast(p0);
408  sumadd_fast(m1);
409  muladd(m9, SECP256K1_N_C_0);
410  muladd(m8, SECP256K1_N_C_1);
411  extract(p1);
412  sumadd(m2);
413  muladd(m10, SECP256K1_N_C_0);
414  muladd(m9, SECP256K1_N_C_1);
415  muladd(m8, SECP256K1_N_C_2);
416  extract(p2);
417  sumadd(m3);
418  muladd(m11, SECP256K1_N_C_0);
419  muladd(m10, SECP256K1_N_C_1);
420  muladd(m9, SECP256K1_N_C_2);
421  muladd(m8, SECP256K1_N_C_3);
422  extract(p3);
423  sumadd(m4);
424  muladd(m12, SECP256K1_N_C_0);
425  muladd(m11, SECP256K1_N_C_1);
426  muladd(m10, SECP256K1_N_C_2);
427  muladd(m9, SECP256K1_N_C_3);
428  sumadd(m8);
429  extract(p4);
430  sumadd(m5);
431  muladd(m12, SECP256K1_N_C_1);
432  muladd(m11, SECP256K1_N_C_2);
433  muladd(m10, SECP256K1_N_C_3);
434  sumadd(m9);
435  extract(p5);
436  sumadd(m6);
437  muladd(m12, SECP256K1_N_C_2);
438  muladd(m11, SECP256K1_N_C_3);
439  sumadd(m10);
440  extract(p6);
441  sumadd_fast(m7);
443  sumadd_fast(m11);
444  extract_fast(p7);
445  p8 = c0 + m12;
446  VERIFY_CHECK(p8 <= 2);
447 
448  /* Reduce 258 bits into 256. */
449  /* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */
450  c = p0 + (uint64_t)SECP256K1_N_C_0 * p8;
451  r->d[0] = c & 0xFFFFFFFFUL; c >>= 32;
452  c += p1 + (uint64_t)SECP256K1_N_C_1 * p8;
453  r->d[1] = c & 0xFFFFFFFFUL; c >>= 32;
454  c += p2 + (uint64_t)SECP256K1_N_C_2 * p8;
455  r->d[2] = c & 0xFFFFFFFFUL; c >>= 32;
456  c += p3 + (uint64_t)SECP256K1_N_C_3 * p8;
457  r->d[3] = c & 0xFFFFFFFFUL; c >>= 32;
458  c += p4 + (uint64_t)p8;
459  r->d[4] = c & 0xFFFFFFFFUL; c >>= 32;
460  c += p5;
461  r->d[5] = c & 0xFFFFFFFFUL; c >>= 32;
462  c += p6;
463  r->d[6] = c & 0xFFFFFFFFUL; c >>= 32;
464  c += p7;
465  r->d[7] = c & 0xFFFFFFFFUL; c >>= 32;
466 
467  /* Final reduction of r. */
469 }
470 
471 static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
472  /* 96 bit accumulator. */
473  uint32_t c0 = 0, c1 = 0, c2 = 0;
474 
475  /* l[0..15] = a[0..7] * b[0..7]. */
476  muladd_fast(a->d[0], b->d[0]);
477  extract_fast(l[0]);
478  muladd(a->d[0], b->d[1]);
479  muladd(a->d[1], b->d[0]);
480  extract(l[1]);
481  muladd(a->d[0], b->d[2]);
482  muladd(a->d[1], b->d[1]);
483  muladd(a->d[2], b->d[0]);
484  extract(l[2]);
485  muladd(a->d[0], b->d[3]);
486  muladd(a->d[1], b->d[2]);
487  muladd(a->d[2], b->d[1]);
488  muladd(a->d[3], b->d[0]);
489  extract(l[3]);
490  muladd(a->d[0], b->d[4]);
491  muladd(a->d[1], b->d[3]);
492  muladd(a->d[2], b->d[2]);
493  muladd(a->d[3], b->d[1]);
494  muladd(a->d[4], b->d[0]);
495  extract(l[4]);
496  muladd(a->d[0], b->d[5]);
497  muladd(a->d[1], b->d[4]);
498  muladd(a->d[2], b->d[3]);
499  muladd(a->d[3], b->d[2]);
500  muladd(a->d[4], b->d[1]);
501  muladd(a->d[5], b->d[0]);
502  extract(l[5]);
503  muladd(a->d[0], b->d[6]);
504  muladd(a->d[1], b->d[5]);
505  muladd(a->d[2], b->d[4]);
506  muladd(a->d[3], b->d[3]);
507  muladd(a->d[4], b->d[2]);
508  muladd(a->d[5], b->d[1]);
509  muladd(a->d[6], b->d[0]);
510  extract(l[6]);
511  muladd(a->d[0], b->d[7]);
512  muladd(a->d[1], b->d[6]);
513  muladd(a->d[2], b->d[5]);
514  muladd(a->d[3], b->d[4]);
515  muladd(a->d[4], b->d[3]);
516  muladd(a->d[5], b->d[2]);
517  muladd(a->d[6], b->d[1]);
518  muladd(a->d[7], b->d[0]);
519  extract(l[7]);
520  muladd(a->d[1], b->d[7]);
521  muladd(a->d[2], b->d[6]);
522  muladd(a->d[3], b->d[5]);
523  muladd(a->d[4], b->d[4]);
524  muladd(a->d[5], b->d[3]);
525  muladd(a->d[6], b->d[2]);
526  muladd(a->d[7], b->d[1]);
527  extract(l[8]);
528  muladd(a->d[2], b->d[7]);
529  muladd(a->d[3], b->d[6]);
530  muladd(a->d[4], b->d[5]);
531  muladd(a->d[5], b->d[4]);
532  muladd(a->d[6], b->d[3]);
533  muladd(a->d[7], b->d[2]);
534  extract(l[9]);
535  muladd(a->d[3], b->d[7]);
536  muladd(a->d[4], b->d[6]);
537  muladd(a->d[5], b->d[5]);
538  muladd(a->d[6], b->d[4]);
539  muladd(a->d[7], b->d[3]);
540  extract(l[10]);
541  muladd(a->d[4], b->d[7]);
542  muladd(a->d[5], b->d[6]);
543  muladd(a->d[6], b->d[5]);
544  muladd(a->d[7], b->d[4]);
545  extract(l[11]);
546  muladd(a->d[5], b->d[7]);
547  muladd(a->d[6], b->d[6]);
548  muladd(a->d[7], b->d[5]);
549  extract(l[12]);
550  muladd(a->d[6], b->d[7]);
551  muladd(a->d[7], b->d[6]);
552  extract(l[13]);
553  muladd_fast(a->d[7], b->d[7]);
554  extract_fast(l[14]);
555  VERIFY_CHECK(c1 == 0);
556  l[15] = c0;
557 }
558 
559 #undef sumadd
560 #undef sumadd_fast
561 #undef muladd
562 #undef muladd_fast
563 #undef extract
564 #undef extract_fast
565 
567  uint32_t l[16];
568  secp256k1_scalar_mul_512(l, a, b);
570 }
571 
573  int ret;
574  VERIFY_CHECK(n > 0);
575  VERIFY_CHECK(n < 16);
576  ret = r->d[0] & ((1 << n) - 1);
577  r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n));
578  r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n));
579  r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n));
580  r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n));
581  r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n));
582  r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n));
583  r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n));
584  r->d[7] = (r->d[7] >> n);
585  return ret;
586 }
587 
589  r1->d[0] = k->d[0];
590  r1->d[1] = k->d[1];
591  r1->d[2] = k->d[2];
592  r1->d[3] = k->d[3];
593  r1->d[4] = 0;
594  r1->d[5] = 0;
595  r1->d[6] = 0;
596  r1->d[7] = 0;
597  r2->d[0] = k->d[4];
598  r2->d[1] = k->d[5];
599  r2->d[2] = k->d[6];
600  r2->d[3] = k->d[7];
601  r2->d[4] = 0;
602  r2->d[5] = 0;
603  r2->d[6] = 0;
604  r2->d[7] = 0;
605 }
606 
608  return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
609 }
610 
612  uint32_t l[16];
613  unsigned int shiftlimbs;
614  unsigned int shiftlow;
615  unsigned int shifthigh;
616  VERIFY_CHECK(shift >= 256);
617  secp256k1_scalar_mul_512(l, a, b);
618  shiftlimbs = shift >> 5;
619  shiftlow = shift & 0x1F;
620  shifthigh = 32 - shiftlow;
621  r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
622  r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
623  r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
624  r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0;
625  r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0;
626  r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
627  r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
628  r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0;
629  secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
630 }
631 
633  uint32_t mask0, mask1;
634  VG_CHECK_VERIFY(r->d, sizeof(r->d));
635  mask0 = flag + ~((uint32_t)0);
636  mask1 = ~mask0;
637  r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
638  r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1);
639  r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1);
640  r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
641  r->d[4] = (r->d[4] & mask0) | (a->d[4] & mask1);
642  r->d[5] = (r->d[5] & mask0) | (a->d[5] & mask1);
643  r->d[6] = (r->d[6] & mask0) | (a->d[6] & mask1);
644  r->d[7] = (r->d[7] & mask0) | (a->d[7] & mask1);
645 }
646 
648  const uint32_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4],
649  a5 = a->v[5], a6 = a->v[6], a7 = a->v[7], a8 = a->v[8];
650 
651  /* The output from secp256k1_modinv32{_var} should be normalized to range [0,modulus), and
652  * have limbs in [0,2^30). The modulus is < 2^256, so the top limb must be below 2^(256-30*8).
653  */
654  VERIFY_CHECK(a0 >> 30 == 0);
655  VERIFY_CHECK(a1 >> 30 == 0);
656  VERIFY_CHECK(a2 >> 30 == 0);
657  VERIFY_CHECK(a3 >> 30 == 0);
658  VERIFY_CHECK(a4 >> 30 == 0);
659  VERIFY_CHECK(a5 >> 30 == 0);
660  VERIFY_CHECK(a6 >> 30 == 0);
661  VERIFY_CHECK(a7 >> 30 == 0);
662  VERIFY_CHECK(a8 >> 16 == 0);
663 
664  r->d[0] = a0 | a1 << 30;
665  r->d[1] = a1 >> 2 | a2 << 28;
666  r->d[2] = a2 >> 4 | a3 << 26;
667  r->d[3] = a3 >> 6 | a4 << 24;
668  r->d[4] = a4 >> 8 | a5 << 22;
669  r->d[5] = a5 >> 10 | a6 << 20;
670  r->d[6] = a6 >> 12 | a7 << 18;
671  r->d[7] = a7 >> 14 | a8 << 16;
672 
673 #ifdef VERIFY
675 #endif
676 }
677 
679  const uint32_t M30 = UINT32_MAX >> 2;
680  const uint32_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3],
681  a4 = a->d[4], a5 = a->d[5], a6 = a->d[6], a7 = a->d[7];
682 
683 #ifdef VERIFY
685 #endif
686 
687  r->v[0] = a0 & M30;
688  r->v[1] = (a0 >> 30 | a1 << 2) & M30;
689  r->v[2] = (a1 >> 28 | a2 << 4) & M30;
690  r->v[3] = (a2 >> 26 | a3 << 6) & M30;
691  r->v[4] = (a3 >> 24 | a4 << 8) & M30;
692  r->v[5] = (a4 >> 22 | a5 << 10) & M30;
693  r->v[6] = (a5 >> 20 | a6 << 12) & M30;
694  r->v[7] = (a6 >> 18 | a7 << 14) & M30;
695  r->v[8] = a7 >> 16;
696 }
697 
699  {{0x10364141L, 0x3F497A33L, 0x348A03BBL, 0x2BB739ABL, -0x146L, 0, 0, 0, 65536}},
700  0x2A774EC1L
701 };
702 
705 #ifdef VERIFY
706  int zero_in = secp256k1_scalar_is_zero(x);
707 #endif
711 
712 #ifdef VERIFY
713  VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
714 #endif
715 }
716 
719 #ifdef VERIFY
720  int zero_in = secp256k1_scalar_is_zero(x);
721 #endif
725 
726 #ifdef VERIFY
727  VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
728 #endif
729 }
730 
732  return !(a->d[0] & 1);
733 }
734 
735 #endif /* SECP256K1_SCALAR_REPR_IMPL_H */
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo)
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo)
static SECP256K1_INLINE int secp256k1_scalar_is_even(const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_check_overflow(const secp256k1_scalar *a)
static SECP256K1_INLINE void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift)
#define SECP256K1_N_5
#define SECP256K1_N_C_4
#define SECP256K1_N_3
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
static SECP256K1_INLINE unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static SECP256K1_INLINE void secp256k1_scalar_clear(secp256k1_scalar *r)
#define extract(n)
Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits.
#define SECP256K1_N_6
#define SECP256K1_N_C_2
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow)
#define SECP256K1_N_C_1
static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b)
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x)
#define sumadd_fast(a)
Add a to the number defined by (c0,c1).
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
#define SECP256K1_N_1
#define SECP256K1_N_2
#define SECP256K1_N_H_2
static SECP256K1_INLINE void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x)
#define SECP256K1_N_C_0
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag)
#define extract_fast(n)
Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits.
#define muladd(a, b)
Add a*b to the number defined by (c0,c1,c2).
#define SECP256K1_N_H_5
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l)
#define SECP256K1_N_H_0
static SECP256K1_INLINE int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
#define SECP256K1_N_C_3
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
#define sumadd(a)
Add a to the number defined by (c0,c1,c2).
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag)
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_scalar
static SECP256K1_INLINE int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow)
#define SECP256K1_N_H_1
#define SECP256K1_N_H_6
#define SECP256K1_N_0
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
#define SECP256K1_N_H_7
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
static SECP256K1_INLINE unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
#define SECP256K1_N_H_3
#define SECP256K1_N_H_4
static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_modinv32_signed30 *a)
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag)
#define muladd_fast(a, b)
Add a*b to the number defined by (c0,c1).
static SECP256K1_INLINE int secp256k1_scalar_is_one(const secp256k1_scalar *a)
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n)
#define SECP256K1_N_4
#define SECP256K1_N_7
static void secp256k1_scalar_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_scalar *a)
#define VG_CHECK_VERIFY(x, y)
Definition: util.h:88
#define VERIFY_CHECK(cond)
Definition: util.h:68
#define SECP256K1_INLINE
Definition: secp256k1.h:124
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
uint64_t d[4]
Definition: scalar_4x64.h:14
static int count
Definition: tests.c:31