Bitcoin ABC 0.26.3
P2P Digital Currency
Loading...
Searching...
No Matches
scalar_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_SCALAR_IMPL_H
8#define SECP256K1_SCALAR_IMPL_H
9
10#ifdef VERIFY
11#include <string.h>
12#endif
13
14#include "scalar.h"
15#include "util.h"
16
17#if defined HAVE_CONFIG_H
18#include "libsecp256k1-config.h"
19#endif
20
21#if defined(EXHAUSTIVE_TEST_ORDER)
22#include "scalar_low_impl.h"
23#elif defined(SECP256K1_WIDEMUL_INT128)
24#include "scalar_4x64_impl.h"
25#elif defined(SECP256K1_WIDEMUL_INT64)
26#include "scalar_8x32_impl.h"
27#else
28#error "Please select wide multiplication implementation"
29#endif
30
31static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
32static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
33
34static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) {
35 int overflow;
37 return (!overflow) & (!secp256k1_scalar_is_zero(r));
38}
39
40/* These parameters are generated using sage/gen_exhaustive_groups.sage. */
41#if defined(EXHAUSTIVE_TEST_ORDER)
42# if EXHAUSTIVE_TEST_ORDER == 13
43# define EXHAUSTIVE_TEST_LAMBDA 9
44# elif EXHAUSTIVE_TEST_ORDER == 199
45# define EXHAUSTIVE_TEST_LAMBDA 92
46# else
47# error No known lambda for the specified exhaustive test group order.
48# endif
49
57 *r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER;
59}
60#else
65 0x5363AD4CUL, 0xC05C30E0UL, 0xA5261C02UL, 0x8812645AUL,
66 0x122E22EAUL, 0x20816678UL, 0xDF02967CUL, 0x1B23BD72UL
67);
68
69#ifdef VERIFY
71#endif
72
73/*
74 * Both lambda and beta are primitive cube roots of unity. That is lamba^3 == 1 mod n and
75 * beta^3 == 1 mod p, where n is the curve order and p is the field order.
76 *
77 * Futhermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are
78 * roots of X^2 + X + 1. Therefore lambda^2 + lamba == -1 mod n and beta^2 + beta == -1 mod p.
79 * (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.)
80 *
81 * Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring
82 * homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi
83 * is a lattice over Z[l] (considering Z[l] as a Z-module). This lattice is generated by a
84 * reduced basis {a1 + b1*l, a2 + b2*l} where
85 *
86 * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
87 * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
88 * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
89 * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
90 *
91 * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
92 * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
93 * and k2 are small in absolute value.
94 *
95 * The algorithm computes c1 = round(b2 * k / n) and c2 = round((-b1) * k / n), and gives
96 * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
97 * compute r2 = k2 mod n, and r1 = k1 mod n = (k - r2 * lambda) mod n, avoiding the need for
98 * the constants a1 and a2.
99 *
100 * g1, g2 are precomputed constants used to replace division with a rounded multiplication
101 * when decomposing the scalar for an endomorphism-based point multiplication.
102 *
103 * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
104 * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
105 *
106 * The derivation is described in the paper "Efficient Software Implementation of Public-Key
107 * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
108 * Section 4.3 (here we use a somewhat higher-precision estimate):
109 * d = a1*b2 - b1*a2
110 * g1 = round(2^384 * b2/d)
111 * g2 = round(2^384 * (-b1)/d)
112 *
113 * (Note that d is also equal to the curve order, n, here because [a1,b1] and [a2,b2]
114 * can be found as outputs of the Extended Euclidean Algorithm on inputs n and lambda).
115 *
116 * The function below splits k into r1 and r2, such that
117 * - r1 + lambda * r2 == k (mod n)
118 * - either r1 < 2^128 or -r1 mod n < 2^128
119 * - either r2 < 2^128 or -r2 mod n < 2^128
120 *
121 * See proof below.
122 */
126 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
127 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
128 );
130 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
131 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
132 );
134 0x3086D221UL, 0xA7D46BCDUL, 0xE86C90E4UL, 0x9284EB15UL,
135 0x3DAA8A14UL, 0x71E8CA7FUL, 0xE893209AUL, 0x45DBB031UL
136 );
138 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL,
139 0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL
140 );
141 VERIFY_CHECK(r1 != k);
142 VERIFY_CHECK(r2 != k);
143 /* these _var calls are constant time since the shift amount is constant */
152
153#ifdef VERIFY
155#endif
156}
157
158#ifdef VERIFY
159/*
160 * Proof for secp256k1_scalar_split_lambda's bounds.
161 *
162 * Let
163 * - epsilon1 = 2^256 * |g1/2^384 - b2/d|
164 * - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d|
165 * - c1 = round(k*g1/2^384)
166 * - c2 = round(k*g2/2^384)
167 *
168 * Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1
169 *
170 * |c1 - k*b2/d|
171 * =
172 * |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d|
173 * <= {triangle inequality}
174 * |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d|
175 * =
176 * |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d|
177 * < {rounding in c1 and 0 <= k < 2^256}
178 * 2^-1 + 2^256 * |g1/2^384 - b2/d|
179 * = {definition of epsilon1}
180 * 2^-1 + epsilon1
181 *
182 * Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2
183 *
184 * |c2 - k*(-b1)/d|
185 * =
186 * |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d|
187 * <= {triangle inequality}
188 * |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d|
189 * =
190 * |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d|
191 * < {rounding in c2 and 0 <= k < 2^256}
192 * 2^-1 + 2^256 * |g2/2^384 - (-b1)/d|
193 * = {definition of epsilon2}
194 * 2^-1 + epsilon2
195 *
196 * Let
197 * - k1 = k - c1*a1 - c2*a2
198 * - k2 = - c1*b1 - c2*b2
199 *
200 * Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128
201 *
202 * |k1|
203 * = {definition of k1}
204 * |k - c1*a1 - c2*a2|
205 * = {(a1*b2 - b1*a2)/n = 1}
206 * |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2|
207 * =
208 * |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)|
209 * <= {triangle inequality}
210 * a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2|
211 * < {Lemma 1 and Lemma 2}
212 * a1*(2^-1 + epslion1) + a2*(2^-1 + epsilon2)
213 * < {rounding up to an integer}
214 * (a1 + a2 + 1)/2
215 * < {rounding up to a power of 2}
216 * 2^128
217 *
218 * Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128
219 *
220 * |k2|
221 * = {definition of k2}
222 * |- c1*a1 - c2*a2|
223 * = {(b1*b2 - b1*b2)/n = 0}
224 * |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2|
225 * =
226 * |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)|
227 * <= {triangle inequality}
228 * (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2|
229 * < {Lemma 1 and Lemma 2}
230 * (-b1)*(2^-1 + epslion1) + b2*(2^-1 + epsilon2)
231 * < {rounding up to an integer}
232 * (-b1 + b2)/2 + 1
233 * < {rounding up to a power of 2}
234 * 2^128
235 *
236 * Let
237 * - r2 = k2 mod n
238 * - r1 = k - r2*lambda mod n.
239 *
240 * Notice that r1 is defined such that r1 + r2 * lambda == k (mod n).
241 *
242 * Lemma 5: r1 == k1 mod n.
243 *
244 * r1
245 * == {definition of r1 and r2}
246 * k - k2*lambda
247 * == {definition of k2}
248 * k - (- c1*b1 - c2*b2)*lambda
249 * ==
250 * k + c1*b1*lambda + c2*b2*lambda
251 * == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n}
252 * k - c1*a1 - c2*a2
253 * == {definition of k1}
254 * k1
255 *
256 * From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that
257 *
258 * - either r1 < 2^128 or -r1 mod n < 2^128
259 * - either r2 < 2^128 or -r2 mod n < 2^128.
260 *
261 * Q.E.D.
262 */
265 unsigned char buf1[32];
266 unsigned char buf2[32];
267
268 /* (a1 + a2 + 1)/2 is 0xa2a8918ca85bafe22016d0b917e4dd77 */
269 static const unsigned char k1_bound[32] = {
270 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
271 0xa2, 0xa8, 0x91, 0x8c, 0xa8, 0x5b, 0xaf, 0xe2, 0x20, 0x16, 0xd0, 0xb9, 0x17, 0xe4, 0xdd, 0x77
272 };
273
274 /* (-b1 + b2)/2 + 1 is 0x8a65287bd47179fb2be08846cea267ed */
275 static const unsigned char k2_bound[32] = {
276 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
277 0x8a, 0x65, 0x28, 0x7b, 0xd4, 0x71, 0x79, 0xfb, 0x2b, 0xe0, 0x88, 0x46, 0xce, 0xa2, 0x67, 0xed
278 };
279
281 secp256k1_scalar_add(&s, &s, r1);
283
288
293}
294#endif /* VERIFY */
295#endif /* !defined(EXHAUSTIVE_TEST_ORDER) */
296
297#endif /* SECP256K1_SCALAR_IMPL_H */
T GetRand(T nMax=std::numeric_limits< T >::max()) noexcept
Generate a uniform random integer of type T in the range [0..nMax) nMax defaults to std::numeric_limi...
Definition random.h:85
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
Check whether a scalar equals zero.
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
Compare two scalars.
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift)
Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer.
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
Definition scalar_4x64.h:17
static const secp256k1_scalar secp256k1_scalar_zero
Definition scalar_impl.h:32
static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin)
Definition scalar_impl.h:34
static const secp256k1_scalar secp256k1_scalar_one
Definition scalar_impl.h:31
static const secp256k1_scalar secp256k1_const_lambda
The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where lambda is:
Definition scalar_impl.h:64
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
static SECP256K1_INLINE int secp256k1_memcmp_var(const void *s1, const void *s2, size_t n)
Semantics like memcmp.
Definition util.h:224
#define VERIFY_CHECK(cond)
Definition util.h:68
A scalar modulo the group order of the secp256k1 curve.
Definition scalar_4x64.h:13
#define EXHAUSTIVE_TEST_ORDER