Bitcoin Core  27.99.0
P2P Digital Currency
hash_tests.cpp
Go to the documentation of this file.
1 // Copyright (c) 2013-2021 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <clientversion.h>
6 #include <crypto/siphash.h>
7 #include <hash.h>
8 #include <test/util/random.h>
10 #include <util/strencodings.h>
11 
12 #include <boost/test/unit_test.hpp>
13 
14 BOOST_AUTO_TEST_SUITE(hash_tests)
15 
17 {
18 
19 #define T(expected, seed, data) BOOST_CHECK_EQUAL(MurmurHash3(seed, ParseHex(data)), expected)
20 
21  // Test MurmurHash3 with various inputs. Of course this is retested in the
22  // bloom filter tests - they would fail if MurmurHash3() had any problems -
23  // but is useful for those trying to implement Bitcoin libraries as a
24  // source of test data for their MurmurHash3() primitive during
25  // development.
26  //
27  // The magic number 0xFBA4C795 comes from CBloomFilter::Hash()
28 
29  T(0x00000000U, 0x00000000, "");
30  T(0x6a396f08U, 0xFBA4C795, "");
31  T(0x81f16f39U, 0xffffffff, "");
32 
33  T(0x514e28b7U, 0x00000000, "00");
34  T(0xea3f0b17U, 0xFBA4C795, "00");
35  T(0xfd6cf10dU, 0x00000000, "ff");
36 
37  T(0x16c6b7abU, 0x00000000, "0011");
38  T(0x8eb51c3dU, 0x00000000, "001122");
39  T(0xb4471bf8U, 0x00000000, "00112233");
40  T(0xe2301fa8U, 0x00000000, "0011223344");
41  T(0xfc2e4a15U, 0x00000000, "001122334455");
42  T(0xb074502cU, 0x00000000, "00112233445566");
43  T(0x8034d2a0U, 0x00000000, "0011223344556677");
44  T(0xb4698defU, 0x00000000, "001122334455667788");
45 
46 #undef T
47 }
48 
49 /*
50  SipHash-2-4 output with
51  k = 00 01 02 ...
52  and
53  in = (empty string)
54  in = 00 (1 byte)
55  in = 00 01 (2 bytes)
56  in = 00 01 02 (3 bytes)
57  ...
58  in = 00 01 02 ... 3e (63 bytes)
59 
60  from: https://131002.net/siphash/siphash24.c
61 */
62 uint64_t siphash_4_2_testvec[] = {
63  0x726fdb47dd0e0e31, 0x74f839c593dc67fd, 0x0d6c8009d9a94f5a, 0x85676696d7fb7e2d,
64  0xcf2794e0277187b7, 0x18765564cd99a68d, 0xcbc9466e58fee3ce, 0xab0200f58b01d137,
65  0x93f5f5799a932462, 0x9e0082df0ba9e4b0, 0x7a5dbbc594ddb9f3, 0xf4b32f46226bada7,
66  0x751e8fbc860ee5fb, 0x14ea5627c0843d90, 0xf723ca908e7af2ee, 0xa129ca6149be45e5,
67  0x3f2acc7f57c29bdb, 0x699ae9f52cbe4794, 0x4bc1b3f0968dd39c, 0xbb6dc91da77961bd,
68  0xbed65cf21aa2ee98, 0xd0f2cbb02e3b67c7, 0x93536795e3a33e88, 0xa80c038ccd5ccec8,
69  0xb8ad50c6f649af94, 0xbce192de8a85b8ea, 0x17d835b85bbb15f3, 0x2f2e6163076bcfad,
70  0xde4daaaca71dc9a5, 0xa6a2506687956571, 0xad87a3535c49ef28, 0x32d892fad841c342,
71  0x7127512f72f27cce, 0xa7f32346f95978e3, 0x12e0b01abb051238, 0x15e034d40fa197ae,
72  0x314dffbe0815a3b4, 0x027990f029623981, 0xcadcd4e59ef40c4d, 0x9abfd8766a33735c,
73  0x0e3ea96b5304a7d0, 0xad0c42d6fc585992, 0x187306c89bc215a9, 0xd4a60abcf3792b95,
74  0xf935451de4f21df2, 0xa9538f0419755787, 0xdb9acddff56ca510, 0xd06c98cd5c0975eb,
75  0xe612a3cb9ecba951, 0xc766e62cfcadaf96, 0xee64435a9752fe72, 0xa192d576b245165a,
76  0x0a8787bf8ecb74b2, 0x81b3e73d20b49b6f, 0x7fa8220ba3b2ecea, 0x245731c13ca42499,
77  0xb78dbfaf3a8d83bd, 0xea1ad565322a1a0b, 0x60e61c23a3795013, 0x6606d7e446282b93,
78  0x6ca4ecb15c5f91e1, 0x9f626da15c9625f3, 0xe51b38608ef25f57, 0x958a324ceb064572
79 };
80 
82 {
83  CSipHasher hasher(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL);
84  BOOST_CHECK_EQUAL(hasher.Finalize(), 0x726fdb47dd0e0e31ull);
85  static const unsigned char t0[1] = {0};
86  hasher.Write(t0);
87  BOOST_CHECK_EQUAL(hasher.Finalize(), 0x74f839c593dc67fdull);
88  static const unsigned char t1[7] = {1,2,3,4,5,6,7};
89  hasher.Write(t1);
90  BOOST_CHECK_EQUAL(hasher.Finalize(), 0x93f5f5799a932462ull);
91  hasher.Write(0x0F0E0D0C0B0A0908ULL);
92  BOOST_CHECK_EQUAL(hasher.Finalize(), 0x3f2acc7f57c29bdbull);
93  static const unsigned char t2[2] = {16,17};
94  hasher.Write(t2);
95  BOOST_CHECK_EQUAL(hasher.Finalize(), 0x4bc1b3f0968dd39cull);
96  static const unsigned char t3[9] = {18,19,20,21,22,23,24,25,26};
97  hasher.Write(t3);
98  BOOST_CHECK_EQUAL(hasher.Finalize(), 0x2f2e6163076bcfadull);
99  static const unsigned char t4[5] = {27,28,29,30,31};
100  hasher.Write(t4);
101  BOOST_CHECK_EQUAL(hasher.Finalize(), 0x7127512f72f27cceull);
102  hasher.Write(0x2726252423222120ULL);
103  BOOST_CHECK_EQUAL(hasher.Finalize(), 0x0e3ea96b5304a7d0ull);
104  hasher.Write(0x2F2E2D2C2B2A2928ULL);
105  BOOST_CHECK_EQUAL(hasher.Finalize(), 0xe612a3cb9ecba951ull);
106 
107  BOOST_CHECK_EQUAL(SipHashUint256(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL, uint256S("1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100")), 0x7127512f72f27cceull);
108 
109  // Check test vectors from spec, one byte at a time
110  CSipHasher hasher2(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL);
111  for (uint8_t x=0; x<std::size(siphash_4_2_testvec); ++x)
112  {
114  hasher2.Write(Span{&x, 1});
115  }
116  // Check test vectors from spec, eight bytes at a time
117  CSipHasher hasher3(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL);
118  for (uint8_t x=0; x<std::size(siphash_4_2_testvec); x+=8)
119  {
121  hasher3.Write(uint64_t(x)|(uint64_t(x+1)<<8)|(uint64_t(x+2)<<16)|(uint64_t(x+3)<<24)|
122  (uint64_t(x+4)<<32)|(uint64_t(x+5)<<40)|(uint64_t(x+6)<<48)|(uint64_t(x+7)<<56));
123  }
124 
125  HashWriter ss{};
127  // Note these tests were originally written with tx.nVersion=1
128  // and the test would be affected by default tx version bumps if not fixed.
129  tx.nVersion = 1;
130  ss << TX_WITH_WITNESS(tx);
131  BOOST_CHECK_EQUAL(SipHashUint256(1, 2, ss.GetHash()), 0x79751e980c2a0a35ULL);
132 
133  // Check consistency between CSipHasher and SipHashUint256[Extra].
134  FastRandomContext ctx;
135  for (int i = 0; i < 16; ++i) {
136  uint64_t k1 = ctx.rand64();
137  uint64_t k2 = ctx.rand64();
138  uint256 x = InsecureRand256();
139  uint32_t n = ctx.rand32();
140  uint8_t nb[4];
141  WriteLE32(nb, n);
142  CSipHasher sip256(k1, k2);
143  sip256.Write(x);
144  CSipHasher sip288 = sip256;
145  sip288.Write(nb);
146  BOOST_CHECK_EQUAL(SipHashUint256(k1, k2, x), sip256.Finalize());
147  BOOST_CHECK_EQUAL(SipHashUint256Extra(k1, k2, x, n), sip288.Finalize());
148  }
149 }
150 
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
Fast randomness source.
Definition: random.h:145
uint32_t rand32() noexcept
Generate a random 32-bit integer.
Definition: random.h:222
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:176
A writer stream (for serialization) that computes a 256-bit hash.
Definition: hash.h:101
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
256-bit opaque blob.
Definition: uint256.h:106
static void WriteLE32(unsigned char *ptr, uint32_t x)
Definition: common.h:40
BOOST_AUTO_TEST_SUITE(cuckoocache_tests)
Test Suite for CuckooCache.
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_CASE(murmurhash3)
Definition: hash_tests.cpp:16
uint64_t siphash_4_2_testvec[]
Definition: hash_tests.cpp:62
#define T(expected, seed, data)
#define BOOST_CHECK_EQUAL(v1, v2)
Definition: object.cpp:18
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:195
uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256 &val, uint32_t extra)
Definition: siphash.cpp:135
uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256 &val)
Optimized SipHash-2-4 implementation for uint256.
Definition: siphash.cpp:95
A mutable version of CTransaction.
Definition: transaction.h:378
static uint256 InsecureRand256()
Definition: random.h:49
uint256 uint256S(const char *str)
Definition: uint256.h:119