Bitcoin Core  24.99.0
P2P Digital Currency
netaddress.cpp
Go to the documentation of this file.
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2022 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 
6 #include <netaddress.h>
7 
8 #include <crypto/common.h>
9 #include <crypto/sha3.h>
10 #include <hash.h>
11 #include <prevector.h>
12 #include <tinyformat.h>
13 #include <util/strencodings.h>
14 #include <util/string.h>
15 
16 #include <algorithm>
17 #include <array>
18 #include <cstdint>
19 #include <ios>
20 #include <iterator>
21 #include <tuple>
22 
24 {
25  switch (m_net) {
26  case NET_IPV4:
27  return BIP155Network::IPV4;
28  case NET_IPV6:
29  return BIP155Network::IPV6;
30  case NET_ONION:
31  return BIP155Network::TORV3;
32  case NET_I2P:
33  return BIP155Network::I2P;
34  case NET_CJDNS:
35  return BIP155Network::CJDNS;
36  case NET_INTERNAL: // should have been handled before calling this function
37  case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
38  case NET_MAX: // m_net is never and should not be set to NET_MAX
39  assert(false);
40  } // no default case, so the compiler can warn about missing cases
41 
42  assert(false);
43 }
44 
45 bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
46 {
47  switch (possible_bip155_net) {
49  if (address_size == ADDR_IPV4_SIZE) {
50  m_net = NET_IPV4;
51  return true;
52  }
53  throw std::ios_base::failure(
54  strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
57  if (address_size == ADDR_IPV6_SIZE) {
58  m_net = NET_IPV6;
59  return true;
60  }
61  throw std::ios_base::failure(
62  strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
64  case BIP155Network::TORV3:
65  if (address_size == ADDR_TORV3_SIZE) {
66  m_net = NET_ONION;
67  return true;
68  }
69  throw std::ios_base::failure(
70  strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
72  case BIP155Network::I2P:
73  if (address_size == ADDR_I2P_SIZE) {
74  m_net = NET_I2P;
75  return true;
76  }
77  throw std::ios_base::failure(
78  strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
79  ADDR_I2P_SIZE));
80  case BIP155Network::CJDNS:
81  if (address_size == ADDR_CJDNS_SIZE) {
82  m_net = NET_CJDNS;
83  return true;
84  }
85  throw std::ios_base::failure(
86  strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
88  }
89 
90  // Don't throw on addresses with unknown network ids (maybe from the future).
91  // Instead silently drop them and have the unserialization code consume
92  // subsequent ones which may be known to us.
93  return false;
94 }
95 
101 CNetAddr::CNetAddr() = default;
102 
103 void CNetAddr::SetIP(const CNetAddr& ipIn)
104 {
105  // Size check.
106  switch (ipIn.m_net) {
107  case NET_IPV4:
108  assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
109  break;
110  case NET_IPV6:
111  assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
112  break;
113  case NET_ONION:
114  assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE);
115  break;
116  case NET_I2P:
117  assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
118  break;
119  case NET_CJDNS:
120  assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
121  break;
122  case NET_INTERNAL:
124  break;
125  case NET_UNROUTABLE:
126  case NET_MAX:
127  assert(false);
128  } // no default case, so the compiler can warn about missing cases
129 
130  m_net = ipIn.m_net;
131  m_addr = ipIn.m_addr;
132 }
133 
135 {
136  assert(ipv6.size() == ADDR_IPV6_SIZE);
137 
138  size_t skip{0};
139 
140  if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
141  // IPv4-in-IPv6
142  m_net = NET_IPV4;
143  skip = sizeof(IPV4_IN_IPV6_PREFIX);
144  } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
145  // TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them.
146  // Mimic a default-constructed CNetAddr object which is !IsValid() and thus
147  // will not be gossiped, but continue reading next addresses from the stream.
148  m_net = NET_IPV6;
150  return;
151  } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
152  // Internal-in-IPv6
154  skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
155  } else {
156  // IPv6
157  m_net = NET_IPV6;
158  }
159 
160  m_addr.assign(ipv6.begin() + skip, ipv6.end());
161 }
162 
169 bool CNetAddr::SetInternal(const std::string &name)
170 {
171  if (name.empty()) {
172  return false;
173  }
175  unsigned char hash[32] = {};
176  CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
177  m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
178  return true;
179 }
180 
181 namespace torv3 {
182 // https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt?id=7116c9cdaba248aae07a3f1d0e15d9dd102f62c5#n2175
183 static constexpr size_t CHECKSUM_LEN = 2;
184 static const unsigned char VERSION[] = {3};
185 static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
186 
187 static void Checksum(Span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
188 {
189  // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
190  static const unsigned char prefix[] = ".onion checksum";
191  static constexpr size_t prefix_len = 15;
192 
193  SHA3_256 hasher;
194 
195  hasher.Write(Span{prefix}.first(prefix_len));
196  hasher.Write(addr_pubkey);
197  hasher.Write(VERSION);
198 
199  uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
200 
201  hasher.Finalize(checksum_full);
202 
203  memcpy(checksum, checksum_full, sizeof(checksum));
204 }
205 
206 }; // namespace torv3
207 
208 bool CNetAddr::SetSpecial(const std::string& addr)
209 {
210  if (!ContainsNoNUL(addr)) {
211  return false;
212  }
213 
214  if (SetTor(addr)) {
215  return true;
216  }
217 
218  if (SetI2P(addr)) {
219  return true;
220  }
221 
222  return false;
223 }
224 
225 bool CNetAddr::SetTor(const std::string& addr)
226 {
227  static const char* suffix{".onion"};
228  static constexpr size_t suffix_len{6};
229 
230  if (addr.size() <= suffix_len || addr.substr(addr.size() - suffix_len) != suffix) {
231  return false;
232  }
233 
234  auto input = DecodeBase32(std::string_view{addr}.substr(0, addr.size() - suffix_len));
235 
236  if (!input) {
237  return false;
238  }
239 
240  if (input->size() == torv3::TOTAL_LEN) {
241  Span<const uint8_t> input_pubkey{input->data(), ADDR_TORV3_SIZE};
242  Span<const uint8_t> input_checksum{input->data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
243  Span<const uint8_t> input_version{input->data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};
244 
245  if (input_version != torv3::VERSION) {
246  return false;
247  }
248 
249  uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
250  torv3::Checksum(input_pubkey, calculated_checksum);
251 
252  if (input_checksum != calculated_checksum) {
253  return false;
254  }
255 
256  m_net = NET_ONION;
257  m_addr.assign(input_pubkey.begin(), input_pubkey.end());
258  return true;
259  }
260 
261  return false;
262 }
263 
264 bool CNetAddr::SetI2P(const std::string& addr)
265 {
266  // I2P addresses that we support consist of 52 base32 characters + ".b32.i2p".
267  static constexpr size_t b32_len{52};
268  static const char* suffix{".b32.i2p"};
269  static constexpr size_t suffix_len{8};
270 
271  if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) {
272  return false;
273  }
274 
275  // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32()
276  // can decode it.
277  const std::string b32_padded = addr.substr(0, b32_len) + "====";
278 
279  auto address_bytes = DecodeBase32(b32_padded);
280 
281  if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) {
282  return false;
283  }
284 
285  m_net = NET_I2P;
286  m_addr.assign(address_bytes->begin(), address_bytes->end());
287 
288  return true;
289 }
290 
291 CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
292 {
293  m_net = NET_IPV4;
294  const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
295  m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
296 }
297 
298 CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
299 {
300  SetLegacyIPv6({reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)});
301  m_scope_id = scope;
302 }
303 
305 {
306  if (!IsIPv4() && !IsIPv6()) {
307  return false;
308  }
309  return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
310 }
311 
312 bool CNetAddr::IsIPv4() const { return m_net == NET_IPV4; }
313 
314 bool CNetAddr::IsIPv6() const { return m_net == NET_IPV6; }
315 
317 {
318  return IsIPv4() && (
319  m_addr[0] == 10 ||
320  (m_addr[0] == 192 && m_addr[1] == 168) ||
321  (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
322 }
323 
325 {
326  return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
327 }
328 
330 {
331  return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254});
332 }
333 
335 {
336  return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
337 }
338 
340 {
341  return IsIPv4() && (HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2}) ||
342  HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100}) ||
343  HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113}));
344 }
345 
347 {
348  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8});
349 }
350 
352 {
353  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02});
354 }
355 
357 {
358  return IsIPv6() &&
359  HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
360  0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
361 }
362 
364 {
365  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00});
366 }
367 
369 {
370  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
371  0x00, 0x00, 0x00, 0x00});
372 }
373 
375 {
376  return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
377 }
378 
380 {
381  return IsIPv6() &&
382  HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
383  0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
384 }
385 
387 {
388  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
389  (m_addr[3] & 0xF0) == 0x10;
390 }
391 
393 {
394  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
395  (m_addr[3] & 0xF0) == 0x20;
396 }
397 
398 bool CNetAddr::IsHeNet() const
399 {
400  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
401 }
402 
407 bool CNetAddr::IsTor() const { return m_net == NET_ONION; }
408 
412 bool CNetAddr::IsI2P() const { return m_net == NET_I2P; }
413 
417 bool CNetAddr::IsCJDNS() const { return m_net == NET_CJDNS; }
418 
419 bool CNetAddr::IsLocal() const
420 {
421  // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
422  if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
423  return true;
424  }
425 
426  // IPv6 loopback (::1/128)
427  static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
428  if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
429  return true;
430  }
431 
432  return false;
433 }
434 
445 bool CNetAddr::IsValid() const
446 {
447  // unspecified IPv6 address (::/128)
448  unsigned char ipNone6[16] = {};
449  if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
450  return false;
451  }
452 
453  // CJDNS addresses always start with 0xfc
454  if (IsCJDNS() && (m_addr[0] != 0xFC)) {
455  return false;
456  }
457 
458  // documentation IPv6 address
459  if (IsRFC3849())
460  return false;
461 
462  if (IsInternal())
463  return false;
464 
465  if (IsIPv4()) {
466  const uint32_t addr = ReadBE32(m_addr.data());
467  if (addr == INADDR_ANY || addr == INADDR_NONE) {
468  return false;
469  }
470  }
471 
472  return true;
473 }
474 
485 {
486  return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || IsRFC4193() || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
487 }
488 
495 {
496  return m_net == NET_INTERNAL;
497 }
498 
500 {
501  switch (m_net) {
502  case NET_IPV4:
503  case NET_IPV6:
504  case NET_INTERNAL:
505  return true;
506  case NET_ONION:
507  case NET_I2P:
508  case NET_CJDNS:
509  return false;
510  case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
511  case NET_MAX: // m_net is never and should not be set to NET_MAX
512  assert(false);
513  } // no default case, so the compiler can warn about missing cases
514 
515  assert(false);
516 }
517 
518 enum Network CNetAddr::GetNetwork() const
519 {
520  if (IsInternal())
521  return NET_INTERNAL;
522 
523  if (!IsRoutable())
524  return NET_UNROUTABLE;
525 
526  return m_net;
527 }
528 
529 static std::string IPv4ToString(Span<const uint8_t> a)
530 {
531  return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
532 }
533 
534 // Return an IPv6 address text representation with zero compression as described in RFC 5952
535 // ("A Recommendation for IPv6 Address Text Representation").
536 static std::string IPv6ToString(Span<const uint8_t> a, uint32_t scope_id)
537 {
538  assert(a.size() == ADDR_IPV6_SIZE);
539  const std::array groups{
540  ReadBE16(&a[0]),
541  ReadBE16(&a[2]),
542  ReadBE16(&a[4]),
543  ReadBE16(&a[6]),
544  ReadBE16(&a[8]),
545  ReadBE16(&a[10]),
546  ReadBE16(&a[12]),
547  ReadBE16(&a[14]),
548  };
549 
550  // The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see
551  // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
552  struct ZeroSpan {
553  size_t start_index{0};
554  size_t len{0};
555  };
556 
557  // Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more
558  // zero sequences of equal length are found.
559  ZeroSpan longest, current;
560  for (size_t i{0}; i < groups.size(); ++i) {
561  if (groups[i] != 0) {
562  current = {i + 1, 0};
563  continue;
564  }
565  current.len += 1;
566  if (current.len > longest.len) {
567  longest = current;
568  }
569  }
570 
571  std::string r;
572  r.reserve(39);
573  for (size_t i{0}; i < groups.size(); ++i) {
574  // Replace the longest sequence of consecutive all-zero fields with two colons ("::").
575  if (longest.len >= 2 && i >= longest.start_index && i < longest.start_index + longest.len) {
576  if (i == longest.start_index) {
577  r += "::";
578  }
579  continue;
580  }
581  r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""), groups[i]);
582  }
583 
584  if (scope_id != 0) {
585  r += strprintf("%%%u", scope_id);
586  }
587 
588  return r;
589 }
590 
592 {
593  uint8_t checksum[torv3::CHECKSUM_LEN];
594  torv3::Checksum(addr, checksum);
595  // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
596  prevector<torv3::TOTAL_LEN, uint8_t> address{addr.begin(), addr.end()};
597  address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
598  address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));
599  return EncodeBase32(address) + ".onion";
600 }
601 
602 std::string CNetAddr::ToStringAddr() const
603 {
604  switch (m_net) {
605  case NET_IPV4:
606  return IPv4ToString(m_addr);
607  case NET_IPV6:
608  return IPv6ToString(m_addr, m_scope_id);
609  case NET_ONION:
610  return OnionToString(m_addr);
611  case NET_I2P:
612  return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
613  case NET_CJDNS:
614  return IPv6ToString(m_addr, 0);
615  case NET_INTERNAL:
616  return EncodeBase32(m_addr) + ".internal";
617  case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
618  case NET_MAX: // m_net is never and should not be set to NET_MAX
619  assert(false);
620  } // no default case, so the compiler can warn about missing cases
621 
622  assert(false);
623 }
624 
625 bool operator==(const CNetAddr& a, const CNetAddr& b)
626 {
627  return a.m_net == b.m_net && a.m_addr == b.m_addr;
628 }
629 
630 bool operator<(const CNetAddr& a, const CNetAddr& b)
631 {
632  return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
633 }
634 
645 bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
646 {
647  if (!IsIPv4())
648  return false;
649  assert(sizeof(*pipv4Addr) == m_addr.size());
650  memcpy(pipv4Addr, m_addr.data(), m_addr.size());
651  return true;
652 }
653 
664 bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
665 {
666  if (!IsIPv6() && !IsCJDNS()) {
667  return false;
668  }
669  assert(sizeof(*pipv6Addr) == m_addr.size());
670  memcpy(pipv6Addr, m_addr.data(), m_addr.size());
671  return true;
672 }
673 
675 {
676  return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380());
677 }
678 
679 uint32_t CNetAddr::GetLinkedIPv4() const
680 {
681  if (IsIPv4()) {
682  return ReadBE32(m_addr.data());
683  } else if (IsRFC6052() || IsRFC6145()) {
684  // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
685  return ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
686  } else if (IsRFC3964()) {
687  // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
688  return ReadBE32(Span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
689  } else if (IsRFC4380()) {
690  // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
691  return ~ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
692  }
693  assert(false);
694 }
695 
697 {
698  // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.
699 
700  // Check for "internal" first because such addresses are also !IsRoutable()
701  // and we don't want to return NET_UNROUTABLE in that case.
702  if (IsInternal()) {
703  return NET_INTERNAL;
704  }
705  if (!IsRoutable()) {
706  return NET_UNROUTABLE;
707  }
708  if (HasLinkedIPv4()) {
709  return NET_IPV4;
710  }
711  return m_net;
712 }
713 
714 std::vector<unsigned char> CNetAddr::GetAddrBytes() const
715 {
716  if (IsAddrV1Compatible()) {
717  uint8_t serialized[V1_SERIALIZATION_SIZE];
718  SerializeV1Array(serialized);
719  return {std::begin(serialized), std::end(serialized)};
720  }
721  return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
722 }
723 
724 // private extensions to enum Network, only returned by GetExtNetwork,
725 // and only used in GetReachabilityFrom
726 static const int NET_UNKNOWN = NET_MAX + 0;
727 static const int NET_TEREDO = NET_MAX + 1;
728 int static GetExtNetwork(const CNetAddr *addr)
729 {
730  if (addr == nullptr)
731  return NET_UNKNOWN;
732  if (addr->IsRFC4380())
733  return NET_TEREDO;
734  return addr->GetNetwork();
735 }
736 
738 int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
739 {
740  enum Reachability {
741  REACH_UNREACHABLE,
742  REACH_DEFAULT,
743  REACH_TEREDO,
744  REACH_IPV6_WEAK,
745  REACH_IPV4,
746  REACH_IPV6_STRONG,
747  REACH_PRIVATE
748  };
749 
750  if (!IsRoutable() || IsInternal())
751  return REACH_UNREACHABLE;
752 
753  int ourNet = GetExtNetwork(this);
754  int theirNet = GetExtNetwork(paddrPartner);
755  bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
756 
757  switch(theirNet) {
758  case NET_IPV4:
759  switch(ourNet) {
760  default: return REACH_DEFAULT;
761  case NET_IPV4: return REACH_IPV4;
762  }
763  case NET_IPV6:
764  switch(ourNet) {
765  default: return REACH_DEFAULT;
766  case NET_TEREDO: return REACH_TEREDO;
767  case NET_IPV4: return REACH_IPV4;
768  case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
769  }
770  case NET_ONION:
771  switch(ourNet) {
772  default: return REACH_DEFAULT;
773  case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well
774  case NET_ONION: return REACH_PRIVATE;
775  }
776  case NET_I2P:
777  switch (ourNet) {
778  case NET_I2P: return REACH_PRIVATE;
779  default: return REACH_DEFAULT;
780  }
781  case NET_CJDNS:
782  switch (ourNet) {
783  case NET_CJDNS: return REACH_PRIVATE;
784  default: return REACH_DEFAULT;
785  }
786  case NET_TEREDO:
787  switch(ourNet) {
788  default: return REACH_DEFAULT;
789  case NET_TEREDO: return REACH_TEREDO;
790  case NET_IPV6: return REACH_IPV6_WEAK;
791  case NET_IPV4: return REACH_IPV4;
792  }
793  case NET_UNKNOWN:
794  case NET_UNROUTABLE:
795  default:
796  switch(ourNet) {
797  default: return REACH_DEFAULT;
798  case NET_TEREDO: return REACH_TEREDO;
799  case NET_IPV6: return REACH_IPV6_WEAK;
800  case NET_IPV4: return REACH_IPV4;
801  case NET_ONION: return REACH_PRIVATE; // either from Tor, or don't care about our address
802  }
803  }
804 }
805 
807 {
808 }
809 
810 CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
811 {
812 }
813 
814 CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
815 {
816 }
817 
818 CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
819 {
820 }
821 
822 CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
823 {
824  assert(addr.sin_family == AF_INET);
825 }
826 
827 CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
828 {
829  assert(addr.sin6_family == AF_INET6);
830 }
831 
832 bool CService::SetSockAddr(const struct sockaddr *paddr)
833 {
834  switch (paddr->sa_family) {
835  case AF_INET:
836  *this = CService(*(const struct sockaddr_in*)paddr);
837  return true;
838  case AF_INET6:
839  *this = CService(*(const struct sockaddr_in6*)paddr);
840  return true;
841  default:
842  return false;
843  }
844 }
845 
846 uint16_t CService::GetPort() const
847 {
848  return port;
849 }
850 
851 bool operator==(const CService& a, const CService& b)
852 {
853  return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
854 }
855 
856 bool operator<(const CService& a, const CService& b)
857 {
858  return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
859 }
860 
873 bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
874 {
875  if (IsIPv4()) {
876  if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
877  return false;
878  *addrlen = sizeof(struct sockaddr_in);
879  struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
880  memset(paddrin, 0, *addrlen);
881  if (!GetInAddr(&paddrin->sin_addr))
882  return false;
883  paddrin->sin_family = AF_INET;
884  paddrin->sin_port = htons(port);
885  return true;
886  }
887  if (IsIPv6() || IsCJDNS()) {
888  if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
889  return false;
890  *addrlen = sizeof(struct sockaddr_in6);
891  struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
892  memset(paddrin6, 0, *addrlen);
893  if (!GetIn6Addr(&paddrin6->sin6_addr))
894  return false;
895  paddrin6->sin6_scope_id = m_scope_id;
896  paddrin6->sin6_family = AF_INET6;
897  paddrin6->sin6_port = htons(port);
898  return true;
899  }
900  return false;
901 }
902 
906 std::vector<unsigned char> CService::GetKey() const
907 {
908  auto key = GetAddrBytes();
909  key.push_back(port / 0x100); // most significant byte of our port
910  key.push_back(port & 0x0FF); // least significant byte of our port
911  return key;
912 }
913 
914 std::string CService::ToStringAddrPort() const
915 {
916  const auto port_str = strprintf("%u", port);
917 
918  if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
919  return ToStringAddr() + ":" + port_str;
920  } else {
921  return "[" + ToStringAddr() + "]:" + port_str;
922  }
923 }
924 
926  valid(false)
927 {
928  memset(netmask, 0, sizeof(netmask));
929 }
930 
931 CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
932 {
933  valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
934  (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
935  if (!valid) {
936  return;
937  }
938 
939  assert(mask <= sizeof(netmask) * 8);
940 
941  network = addr;
942 
943  uint8_t n = mask;
944  for (size_t i = 0; i < network.m_addr.size(); ++i) {
945  const uint8_t bits = n < 8 ? n : 8;
946  netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
947  network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
948  n -= bits;
949  }
950 }
951 
956 static inline int NetmaskBits(uint8_t x)
957 {
958  switch(x) {
959  case 0x00: return 0;
960  case 0x80: return 1;
961  case 0xc0: return 2;
962  case 0xe0: return 3;
963  case 0xf0: return 4;
964  case 0xf8: return 5;
965  case 0xfc: return 6;
966  case 0xfe: return 7;
967  case 0xff: return 8;
968  default: return -1;
969  }
970 }
971 
972 CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
973 {
974  valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
975  if (!valid) {
976  return;
977  }
978  // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
979  bool zeros_found = false;
980  for (auto b : mask.m_addr) {
981  const int num_bits = NetmaskBits(b);
982  if (num_bits == -1 || (zeros_found && num_bits != 0)) {
983  valid = false;
984  return;
985  }
986  if (num_bits < 8) {
987  zeros_found = true;
988  }
989  }
990 
991  assert(mask.m_addr.size() <= sizeof(netmask));
992 
993  memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
994 
995  network = addr;
996 
997  // Normalize network according to netmask
998  for (size_t x = 0; x < network.m_addr.size(); ++x) {
999  network.m_addr[x] &= netmask[x];
1000  }
1001 }
1002 
1004 {
1005  switch (addr.m_net) {
1006  case NET_IPV4:
1007  case NET_IPV6:
1008  valid = true;
1009  assert(addr.m_addr.size() <= sizeof(netmask));
1010  memset(netmask, 0xFF, addr.m_addr.size());
1011  break;
1012  case NET_ONION:
1013  case NET_I2P:
1014  case NET_CJDNS:
1015  valid = true;
1016  break;
1017  case NET_INTERNAL:
1018  case NET_UNROUTABLE:
1019  case NET_MAX:
1020  return;
1021  }
1022 
1023  network = addr;
1024 }
1025 
1030 bool CSubNet::Match(const CNetAddr &addr) const
1031 {
1032  if (!valid || !addr.IsValid() || network.m_net != addr.m_net)
1033  return false;
1034 
1035  switch (network.m_net) {
1036  case NET_IPV4:
1037  case NET_IPV6:
1038  break;
1039  case NET_ONION:
1040  case NET_I2P:
1041  case NET_CJDNS:
1042  case NET_INTERNAL:
1043  return addr == network;
1044  case NET_UNROUTABLE:
1045  case NET_MAX:
1046  return false;
1047  }
1048 
1049  assert(network.m_addr.size() == addr.m_addr.size());
1050  for (size_t x = 0; x < addr.m_addr.size(); ++x) {
1051  if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
1052  return false;
1053  }
1054  }
1055  return true;
1056 }
1057 
1058 std::string CSubNet::ToString() const
1059 {
1060  std::string suffix;
1061 
1062  switch (network.m_net) {
1063  case NET_IPV4:
1064  case NET_IPV6: {
1065  assert(network.m_addr.size() <= sizeof(netmask));
1066 
1067  uint8_t cidr = 0;
1068 
1069  for (size_t i = 0; i < network.m_addr.size(); ++i) {
1070  if (netmask[i] == 0x00) {
1071  break;
1072  }
1073  cidr += NetmaskBits(netmask[i]);
1074  }
1075 
1076  suffix = strprintf("/%u", cidr);
1077  break;
1078  }
1079  case NET_ONION:
1080  case NET_I2P:
1081  case NET_CJDNS:
1082  case NET_INTERNAL:
1083  case NET_UNROUTABLE:
1084  case NET_MAX:
1085  break;
1086  }
1087 
1088  return network.ToStringAddr() + suffix;
1089 }
1090 
1091 bool CSubNet::IsValid() const
1092 {
1093  return valid;
1094 }
1095 
1096 bool operator==(const CSubNet& a, const CSubNet& b)
1097 {
1098  return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
1099 }
1100 
1101 bool operator<(const CSubNet& a, const CSubNet& b)
1102 {
1103  return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
1104 }
if(!SetupNetworking())
Network address.
Definition: netaddress.h:120
Network GetNetClass() const
Definition: netaddress.cpp:696
void SerializeV1Array(uint8_t(&arr)[V1_SERIALIZATION_SIZE]) const
Serialize in pre-ADDRv2/BIP155 format to an array.
Definition: netaddress.h:313
std::string ToStringAddr() const
Definition: netaddress.cpp:602
prevector< ADDR_IPV6_SIZE, uint8_t > m_addr
Raw representation of the network address.
Definition: netaddress.h:126
bool IsBindAny() const
Definition: netaddress.cpp:304
bool IsRFC6052() const
Definition: netaddress.cpp:356
void SetIP(const CNetAddr &ip)
Definition: netaddress.cpp:103
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:208
bool IsRFC7343() const
Definition: netaddress.cpp:392
bool GetIn6Addr(struct in6_addr *pipv6Addr) const
Try to get our IPv6 (or CJDNS) address.
Definition: netaddress.cpp:664
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:714
bool IsCJDNS() const
Check whether this object represents a CJDNS address.
Definition: netaddress.cpp:417
bool IsTor() const
Check whether this object represents a TOR address.
Definition: netaddress.cpp:407
bool IsRoutable() const
Definition: netaddress.cpp:484
bool GetInAddr(struct in_addr *pipv4Addr) const
Try to get our IPv4 address.
Definition: netaddress.cpp:645
bool HasLinkedIPv4() const
Whether this address has a linked IPv4 address (see GetLinkedIPv4()).
Definition: netaddress.cpp:674
Network m_net
Network to which this address belongs.
Definition: netaddress.h:131
bool IsRFC5737() const
Definition: netaddress.cpp:339
void SetLegacyIPv6(Span< const uint8_t > ipv6)
Set from a legacy IPv6 address.
Definition: netaddress.cpp:134
bool SetI2P(const std::string &addr)
Parse an I2P address and set this object to it.
Definition: netaddress.cpp:264
bool IsRFC6598() const
Definition: netaddress.cpp:334
bool IsRFC1918() const
Definition: netaddress.cpp:316
bool IsValid() const
Definition: netaddress.cpp:445
bool IsIPv4() const
Definition: netaddress.cpp:312
BIP155Network GetBIP155Network() const
Get the BIP155 network id of this address.
Definition: netaddress.cpp:23
uint32_t GetLinkedIPv4() const
For IPv4, mapped IPv4, SIIT translated IPv4, Teredo, 6to4 tunneled addresses, return the relevant IPv...
Definition: netaddress.cpp:679
bool SetTor(const std::string &addr)
Parse a Tor address and set this object to it.
Definition: netaddress.cpp:225
uint32_t m_scope_id
Scope id if scoped/link-local IPV6 address.
Definition: netaddress.h:137
bool IsRFC3849() const
Definition: netaddress.cpp:346
bool IsHeNet() const
Definition: netaddress.cpp:398
bool IsLocal() const
Definition: netaddress.cpp:419
static constexpr size_t V1_SERIALIZATION_SIZE
Size of CNetAddr when serialized as ADDRv1 (pre-BIP155) (in bytes).
Definition: netaddress.h:285
bool IsIPv6() const
Definition: netaddress.cpp:314
bool IsInternal() const
Definition: netaddress.cpp:494
bool SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
Set m_net from the provided BIP155 network id and size after validation.
Definition: netaddress.cpp:45
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:169
bool IsRFC4193() const
Definition: netaddress.cpp:374
int GetReachabilityFrom(const CNetAddr *paddrPartner=nullptr) const
Calculates a metric for how reachable (*this) is from a given partner.
Definition: netaddress.cpp:738
bool IsRFC2544() const
Definition: netaddress.cpp:324
enum Network GetNetwork() const
Definition: netaddress.cpp:518
bool IsRFC6145() const
Definition: netaddress.cpp:379
CNetAddr()
Construct an unspecified IPv6 network address (::/128).
bool IsRFC3964() const
Definition: netaddress.cpp:351
bool IsRFC4380() const
Definition: netaddress.cpp:363
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:499
BIP155Network
BIP155 network ids recognized by this software.
Definition: netaddress.h:273
bool IsRFC3927() const
Definition: netaddress.cpp:329
bool IsRFC4862() const
Definition: netaddress.cpp:368
bool IsRFC4843() const
Definition: netaddress.cpp:386
bool IsI2P() const
Check whether this object represents an I2P address.
Definition: netaddress.cpp:412
A hasher class for SHA-256.
Definition: sha256.h:14
void Finalize(unsigned char hash[OUTPUT_SIZE])
Definition: sha256.cpp:707
CSHA256 & Write(const unsigned char *data, size_t len)
Definition: sha256.cpp:681
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:520
uint16_t GetPort() const
Definition: netaddress.cpp:846
bool SetSockAddr(const struct sockaddr *paddr)
Definition: netaddress.cpp:832
uint16_t port
Definition: netaddress.h:522
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:873
std::string ToStringAddrPort() const
Definition: netaddress.cpp:914
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:906
bool valid
Is this value valid? (only used to signal parse errors)
Definition: netaddress.h:476
CNetAddr network
Network (base) address.
Definition: netaddress.h:472
uint8_t netmask[16]
Netmask, in network byte order.
Definition: netaddress.h:474
std::string ToString() const
bool IsValid() const
CSubNet()
Construct an invalid subnet (empty, Match() always returns false).
Definition: netaddress.cpp:925
bool Match(const CNetAddr &addr) const
Definition: sha3.h:17
SHA3_256 & Write(Span< const unsigned char > data)
Definition: sha3.cpp:111
SHA3_256 & Finalize(Span< unsigned char > output)
Definition: sha3.cpp:141
static constexpr size_t OUTPUT_SIZE
Definition: sha3.h:33
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:97
constexpr std::size_t size() const noexcept
Definition: span.h:186
constexpr C * data() const noexcept
Definition: span.h:173
constexpr C * end() const noexcept
Definition: span.h:175
constexpr C * begin() const noexcept
Definition: span.h:174
Implements a drop-in replacement for std::vector<T> which stores up to N elements directly (without h...
Definition: prevector.h:37
size_type size() const
Definition: prevector.h:284
value_type * data()
Definition: prevector.h:520
iterator begin()
Definition: prevector.h:292
iterator end()
Definition: prevector.h:294
void assign(size_type n, const T &val)
Definition: prevector.h:220
static uint16_t ReadBE16(const unsigned char *ptr)
Definition: common.h:56
static uint32_t ReadBE32(const unsigned char *ptr)
Definition: common.h:63
@ I2P
Definition: logging.h:62
static const unsigned char VERSION[]
Definition: netaddress.cpp:184
static constexpr size_t CHECKSUM_LEN
Definition: netaddress.cpp:183
static void Checksum(Span< const uint8_t > addr_pubkey, uint8_t(&checksum)[CHECKSUM_LEN])
Definition: netaddress.cpp:187
static constexpr size_t TOTAL_LEN
Definition: netaddress.cpp:185
static const int NET_UNKNOWN
Definition: netaddress.cpp:726
static int GetExtNetwork(const CNetAddr *addr)
Definition: netaddress.cpp:728
static const int NET_TEREDO
Definition: netaddress.cpp:727
static int NetmaskBits(uint8_t x)
Definition: netaddress.cpp:956
bool operator==(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:625
std::string OnionToString(Span< const uint8_t > addr)
Definition: netaddress.cpp:591
static std::string IPv6ToString(Span< const uint8_t > a, uint32_t scope_id)
Definition: netaddress.cpp:536
static std::string IPv4ToString(Span< const uint8_t > a)
Definition: netaddress.cpp:529
bool operator<(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:630
static constexpr size_t ADDR_CJDNS_SIZE
Size of CJDNS address (in bytes).
Definition: netaddress.h:106
static constexpr size_t ADDR_TORV3_SIZE
Size of TORv3 address (in bytes).
Definition: netaddress.h:100
static constexpr size_t ADDR_I2P_SIZE
Size of I2P address (in bytes).
Definition: netaddress.h:103
static constexpr size_t ADDR_INTERNAL_SIZE
Size of "internal" (NET_INTERNAL) address (in bytes).
Definition: netaddress.h:109
static const std::array< uint8_t, 6 > INTERNAL_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded "internal" address.
Definition: netaddress.h:88
static constexpr size_t ADDR_IPV4_SIZE
Size of IPv4 address (in bytes).
Definition: netaddress.h:93
static const std::array< uint8_t, 6 > TORV2_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded TORv2 address.
Definition: netaddress.h:80
Network
A network type.
Definition: netaddress.h:44
@ NET_I2P
I2P.
Definition: netaddress.h:58
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:61
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:68
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:55
@ NET_IPV6
IPv6.
Definition: netaddress.h:52
@ NET_IPV4
IPv4.
Definition: netaddress.h:49
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:46
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:65
static const std::array< uint8_t, 12 > IPV4_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded IPv4 address.
Definition: netaddress.h:73
static constexpr size_t ADDR_IPV6_SIZE
Size of IPv6 address (in bytes).
Definition: netaddress.h:96
@ IPV4
Definition: netbase.cpp:279
@ IPV6
Definition: netbase.cpp:281
const char * prefix
Definition: rest.cpp:987
const char * name
Definition: rest.cpp:46
bool ContainsNoNUL(std::string_view str) noexcept
Check if a string does not contain any embedded NUL (\0) characters.
Definition: string.h:97
bool HasPrefix(const T1 &obj, const std::array< uint8_t, PREFIX_LEN > &prefix)
Check whether a container begins with the given prefix.
Definition: string.h:121
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1162
std::string EncodeBase32(Span< const unsigned char > input, bool pad)
Base32 encode.
std::string ToLower(std::string_view str)
Returns the lowercase equivalent of the given string.
std::optional< std::vector< unsigned char > > DecodeBase32(std::string_view str)
assert(!tx.IsCoinBase())