Bitcoin Core  27.99.0
P2P Digital Currency
netaddress.cpp
Go to the documentation of this file.
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2022 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 
6 #include <netaddress.h>
7 
8 #include <crypto/common.h>
9 #include <crypto/sha3.h>
10 #include <hash.h>
11 #include <prevector.h>
12 #include <tinyformat.h>
13 #include <util/strencodings.h>
14 #include <util/string.h>
15 
16 #include <algorithm>
17 #include <array>
18 #include <cstdint>
19 #include <ios>
20 #include <iterator>
21 #include <tuple>
22 
24 using util::HasPrefix;
25 
27 {
28  switch (m_net) {
29  case NET_IPV4:
30  return BIP155Network::IPV4;
31  case NET_IPV6:
32  return BIP155Network::IPV6;
33  case NET_ONION:
34  return BIP155Network::TORV3;
35  case NET_I2P:
36  return BIP155Network::I2P;
37  case NET_CJDNS:
38  return BIP155Network::CJDNS;
39  case NET_INTERNAL: // should have been handled before calling this function
40  case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
41  case NET_MAX: // m_net is never and should not be set to NET_MAX
42  assert(false);
43  } // no default case, so the compiler can warn about missing cases
44 
45  assert(false);
46 }
47 
48 bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
49 {
50  switch (possible_bip155_net) {
52  if (address_size == ADDR_IPV4_SIZE) {
53  m_net = NET_IPV4;
54  return true;
55  }
56  throw std::ios_base::failure(
57  strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
60  if (address_size == ADDR_IPV6_SIZE) {
61  m_net = NET_IPV6;
62  return true;
63  }
64  throw std::ios_base::failure(
65  strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
67  case BIP155Network::TORV3:
68  if (address_size == ADDR_TORV3_SIZE) {
69  m_net = NET_ONION;
70  return true;
71  }
72  throw std::ios_base::failure(
73  strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
75  case BIP155Network::I2P:
76  if (address_size == ADDR_I2P_SIZE) {
77  m_net = NET_I2P;
78  return true;
79  }
80  throw std::ios_base::failure(
81  strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
82  ADDR_I2P_SIZE));
83  case BIP155Network::CJDNS:
84  if (address_size == ADDR_CJDNS_SIZE) {
85  m_net = NET_CJDNS;
86  return true;
87  }
88  throw std::ios_base::failure(
89  strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
91  }
92 
93  // Don't throw on addresses with unknown network ids (maybe from the future).
94  // Instead silently drop them and have the unserialization code consume
95  // subsequent ones which may be known to us.
96  return false;
97 }
98 
104 CNetAddr::CNetAddr() = default;
105 
106 void CNetAddr::SetIP(const CNetAddr& ipIn)
107 {
108  // Size check.
109  switch (ipIn.m_net) {
110  case NET_IPV4:
111  assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
112  break;
113  case NET_IPV6:
114  assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
115  break;
116  case NET_ONION:
117  assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE);
118  break;
119  case NET_I2P:
120  assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
121  break;
122  case NET_CJDNS:
123  assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
124  break;
125  case NET_INTERNAL:
127  break;
128  case NET_UNROUTABLE:
129  case NET_MAX:
130  assert(false);
131  } // no default case, so the compiler can warn about missing cases
132 
133  m_net = ipIn.m_net;
134  m_addr = ipIn.m_addr;
135 }
136 
138 {
139  assert(ipv6.size() == ADDR_IPV6_SIZE);
140 
141  size_t skip{0};
142 
143  if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
144  // IPv4-in-IPv6
145  m_net = NET_IPV4;
146  skip = sizeof(IPV4_IN_IPV6_PREFIX);
147  } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
148  // TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them.
149  // Mimic a default-constructed CNetAddr object which is !IsValid() and thus
150  // will not be gossiped, but continue reading next addresses from the stream.
151  m_net = NET_IPV6;
153  return;
154  } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
155  // Internal-in-IPv6
157  skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
158  } else {
159  // IPv6
160  m_net = NET_IPV6;
161  }
162 
163  m_addr.assign(ipv6.begin() + skip, ipv6.end());
164 }
165 
172 bool CNetAddr::SetInternal(const std::string &name)
173 {
174  if (name.empty()) {
175  return false;
176  }
178  unsigned char hash[32] = {};
179  CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
180  m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
181  return true;
182 }
183 
184 namespace torv3 {
185 // https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt?id=7116c9cdaba248aae07a3f1d0e15d9dd102f62c5#n2175
186 static constexpr size_t CHECKSUM_LEN = 2;
187 static const unsigned char VERSION[] = {3};
188 static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
189 
190 static void Checksum(Span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
191 {
192  // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
193  static const unsigned char prefix[] = ".onion checksum";
194  static constexpr size_t prefix_len = 15;
195 
196  SHA3_256 hasher;
197 
198  hasher.Write(Span{prefix}.first(prefix_len));
199  hasher.Write(addr_pubkey);
200  hasher.Write(VERSION);
201 
202  uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
203 
204  hasher.Finalize(checksum_full);
205 
206  memcpy(checksum, checksum_full, sizeof(checksum));
207 }
208 
209 }; // namespace torv3
210 
211 bool CNetAddr::SetSpecial(const std::string& addr)
212 {
213  if (!ContainsNoNUL(addr)) {
214  return false;
215  }
216 
217  if (SetTor(addr)) {
218  return true;
219  }
220 
221  if (SetI2P(addr)) {
222  return true;
223  }
224 
225  return false;
226 }
227 
228 bool CNetAddr::SetTor(const std::string& addr)
229 {
230  static const char* suffix{".onion"};
231  static constexpr size_t suffix_len{6};
232 
233  if (addr.size() <= suffix_len || addr.substr(addr.size() - suffix_len) != suffix) {
234  return false;
235  }
236 
237  auto input = DecodeBase32(std::string_view{addr}.substr(0, addr.size() - suffix_len));
238 
239  if (!input) {
240  return false;
241  }
242 
243  if (input->size() == torv3::TOTAL_LEN) {
244  Span<const uint8_t> input_pubkey{input->data(), ADDR_TORV3_SIZE};
245  Span<const uint8_t> input_checksum{input->data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
246  Span<const uint8_t> input_version{input->data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};
247 
248  if (input_version != torv3::VERSION) {
249  return false;
250  }
251 
252  uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
253  torv3::Checksum(input_pubkey, calculated_checksum);
254 
255  if (input_checksum != calculated_checksum) {
256  return false;
257  }
258 
259  m_net = NET_ONION;
260  m_addr.assign(input_pubkey.begin(), input_pubkey.end());
261  return true;
262  }
263 
264  return false;
265 }
266 
267 bool CNetAddr::SetI2P(const std::string& addr)
268 {
269  // I2P addresses that we support consist of 52 base32 characters + ".b32.i2p".
270  static constexpr size_t b32_len{52};
271  static const char* suffix{".b32.i2p"};
272  static constexpr size_t suffix_len{8};
273 
274  if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) {
275  return false;
276  }
277 
278  // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32()
279  // can decode it.
280  const std::string b32_padded = addr.substr(0, b32_len) + "====";
281 
282  auto address_bytes = DecodeBase32(b32_padded);
283 
284  if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) {
285  return false;
286  }
287 
288  m_net = NET_I2P;
289  m_addr.assign(address_bytes->begin(), address_bytes->end());
290 
291  return true;
292 }
293 
294 CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
295 {
296  m_net = NET_IPV4;
297  const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
298  m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
299 }
300 
301 CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
302 {
303  SetLegacyIPv6({reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)});
304  m_scope_id = scope;
305 }
306 
308 {
309  if (!IsIPv4() && !IsIPv6()) {
310  return false;
311  }
312  return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
313 }
314 
316 {
317  return IsIPv4() && (
318  m_addr[0] == 10 ||
319  (m_addr[0] == 192 && m_addr[1] == 168) ||
320  (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
321 }
322 
324 {
325  return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
326 }
327 
329 {
330  return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254});
331 }
332 
334 {
335  return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
336 }
337 
339 {
340  return IsIPv4() && (HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2}) ||
341  HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100}) ||
342  HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113}));
343 }
344 
346 {
347  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8});
348 }
349 
351 {
352  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02});
353 }
354 
356 {
357  return IsIPv6() &&
358  HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
359  0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
360 }
361 
363 {
364  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00});
365 }
366 
368 {
369  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
370  0x00, 0x00, 0x00, 0x00});
371 }
372 
374 {
375  return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
376 }
377 
379 {
380  return IsIPv6() &&
381  HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
382  0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
383 }
384 
386 {
387  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
388  (m_addr[3] & 0xF0) == 0x10;
389 }
390 
392 {
393  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
394  (m_addr[3] & 0xF0) == 0x20;
395 }
396 
397 bool CNetAddr::IsHeNet() const
398 {
399  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
400 }
401 
402 bool CNetAddr::IsLocal() const
403 {
404  // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
405  if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
406  return true;
407  }
408 
409  // IPv6 loopback (::1/128)
410  static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
411  if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
412  return true;
413  }
414 
415  return false;
416 }
417 
428 bool CNetAddr::IsValid() const
429 {
430  // unspecified IPv6 address (::/128)
431  unsigned char ipNone6[16] = {};
432  if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
433  return false;
434  }
435 
436  if (IsCJDNS() && !HasCJDNSPrefix()) {
437  return false;
438  }
439 
440  // documentation IPv6 address
441  if (IsRFC3849())
442  return false;
443 
444  if (IsInternal())
445  return false;
446 
447  if (IsIPv4()) {
448  const uint32_t addr = ReadBE32(m_addr.data());
449  if (addr == INADDR_ANY || addr == INADDR_NONE) {
450  return false;
451  }
452  }
453 
454  return true;
455 }
456 
467 {
468  return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || IsRFC4193() || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
469 }
470 
477 {
478  return m_net == NET_INTERNAL;
479 }
480 
482 {
483  switch (m_net) {
484  case NET_IPV4:
485  case NET_IPV6:
486  case NET_INTERNAL:
487  return true;
488  case NET_ONION:
489  case NET_I2P:
490  case NET_CJDNS:
491  return false;
492  case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
493  case NET_MAX: // m_net is never and should not be set to NET_MAX
494  assert(false);
495  } // no default case, so the compiler can warn about missing cases
496 
497  assert(false);
498 }
499 
500 enum Network CNetAddr::GetNetwork() const
501 {
502  if (IsInternal())
503  return NET_INTERNAL;
504 
505  if (!IsRoutable())
506  return NET_UNROUTABLE;
507 
508  return m_net;
509 }
510 
511 static std::string IPv4ToString(Span<const uint8_t> a)
512 {
513  return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
514 }
515 
516 // Return an IPv6 address text representation with zero compression as described in RFC 5952
517 // ("A Recommendation for IPv6 Address Text Representation").
518 static std::string IPv6ToString(Span<const uint8_t> a, uint32_t scope_id)
519 {
520  assert(a.size() == ADDR_IPV6_SIZE);
521  const std::array groups{
522  ReadBE16(&a[0]),
523  ReadBE16(&a[2]),
524  ReadBE16(&a[4]),
525  ReadBE16(&a[6]),
526  ReadBE16(&a[8]),
527  ReadBE16(&a[10]),
528  ReadBE16(&a[12]),
529  ReadBE16(&a[14]),
530  };
531 
532  // The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see
533  // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
534  struct ZeroSpan {
535  size_t start_index{0};
536  size_t len{0};
537  };
538 
539  // Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more
540  // zero sequences of equal length are found.
541  ZeroSpan longest, current;
542  for (size_t i{0}; i < groups.size(); ++i) {
543  if (groups[i] != 0) {
544  current = {i + 1, 0};
545  continue;
546  }
547  current.len += 1;
548  if (current.len > longest.len) {
549  longest = current;
550  }
551  }
552 
553  std::string r;
554  r.reserve(39);
555  for (size_t i{0}; i < groups.size(); ++i) {
556  // Replace the longest sequence of consecutive all-zero fields with two colons ("::").
557  if (longest.len >= 2 && i >= longest.start_index && i < longest.start_index + longest.len) {
558  if (i == longest.start_index) {
559  r += "::";
560  }
561  continue;
562  }
563  r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""), groups[i]);
564  }
565 
566  if (scope_id != 0) {
567  r += strprintf("%%%u", scope_id);
568  }
569 
570  return r;
571 }
572 
574 {
575  uint8_t checksum[torv3::CHECKSUM_LEN];
576  torv3::Checksum(addr, checksum);
577  // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
578  prevector<torv3::TOTAL_LEN, uint8_t> address{addr.begin(), addr.end()};
579  address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
580  address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));
581  return EncodeBase32(address) + ".onion";
582 }
583 
584 std::string CNetAddr::ToStringAddr() const
585 {
586  switch (m_net) {
587  case NET_IPV4:
588  return IPv4ToString(m_addr);
589  case NET_IPV6:
590  return IPv6ToString(m_addr, m_scope_id);
591  case NET_ONION:
592  return OnionToString(m_addr);
593  case NET_I2P:
594  return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
595  case NET_CJDNS:
596  return IPv6ToString(m_addr, 0);
597  case NET_INTERNAL:
598  return EncodeBase32(m_addr) + ".internal";
599  case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
600  case NET_MAX: // m_net is never and should not be set to NET_MAX
601  assert(false);
602  } // no default case, so the compiler can warn about missing cases
603 
604  assert(false);
605 }
606 
607 bool operator==(const CNetAddr& a, const CNetAddr& b)
608 {
609  return a.m_net == b.m_net && a.m_addr == b.m_addr;
610 }
611 
612 bool operator<(const CNetAddr& a, const CNetAddr& b)
613 {
614  return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
615 }
616 
627 bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
628 {
629  if (!IsIPv4())
630  return false;
631  assert(sizeof(*pipv4Addr) == m_addr.size());
632  memcpy(pipv4Addr, m_addr.data(), m_addr.size());
633  return true;
634 }
635 
646 bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
647 {
648  if (!IsIPv6() && !IsCJDNS()) {
649  return false;
650  }
651  assert(sizeof(*pipv6Addr) == m_addr.size());
652  memcpy(pipv6Addr, m_addr.data(), m_addr.size());
653  return true;
654 }
655 
657 {
658  return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380());
659 }
660 
661 uint32_t CNetAddr::GetLinkedIPv4() const
662 {
663  if (IsIPv4()) {
664  return ReadBE32(m_addr.data());
665  } else if (IsRFC6052() || IsRFC6145()) {
666  // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
667  return ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
668  } else if (IsRFC3964()) {
669  // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
670  return ReadBE32(Span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
671  } else if (IsRFC4380()) {
672  // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
673  return ~ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
674  }
675  assert(false);
676 }
677 
679 {
680  // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.
681 
682  // Check for "internal" first because such addresses are also !IsRoutable()
683  // and we don't want to return NET_UNROUTABLE in that case.
684  if (IsInternal()) {
685  return NET_INTERNAL;
686  }
687  if (!IsRoutable()) {
688  return NET_UNROUTABLE;
689  }
690  if (HasLinkedIPv4()) {
691  return NET_IPV4;
692  }
693  return m_net;
694 }
695 
696 std::vector<unsigned char> CNetAddr::GetAddrBytes() const
697 {
698  if (IsAddrV1Compatible()) {
699  uint8_t serialized[V1_SERIALIZATION_SIZE];
700  SerializeV1Array(serialized);
701  return {std::begin(serialized), std::end(serialized)};
702  }
703  return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
704 }
705 
706 // private extensions to enum Network, only returned by GetExtNetwork,
707 // and only used in GetReachabilityFrom
708 static const int NET_TEREDO = NET_MAX;
709 int static GetExtNetwork(const CNetAddr& addr)
710 {
711  if (addr.IsRFC4380())
712  return NET_TEREDO;
713  return addr.GetNetwork();
714 }
715 
717 int CNetAddr::GetReachabilityFrom(const CNetAddr& paddrPartner) const
718 {
719  enum Reachability {
720  REACH_UNREACHABLE,
721  REACH_DEFAULT,
722  REACH_TEREDO,
723  REACH_IPV6_WEAK,
724  REACH_IPV4,
725  REACH_IPV6_STRONG,
726  REACH_PRIVATE
727  };
728 
729  if (!IsRoutable() || IsInternal())
730  return REACH_UNREACHABLE;
731 
732  int ourNet = GetExtNetwork(*this);
733  int theirNet = GetExtNetwork(paddrPartner);
734  bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
735 
736  switch(theirNet) {
737  case NET_IPV4:
738  switch(ourNet) {
739  default: return REACH_DEFAULT;
740  case NET_IPV4: return REACH_IPV4;
741  }
742  case NET_IPV6:
743  switch(ourNet) {
744  default: return REACH_DEFAULT;
745  case NET_TEREDO: return REACH_TEREDO;
746  case NET_IPV4: return REACH_IPV4;
747  case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
748  }
749  case NET_ONION:
750  switch(ourNet) {
751  default: return REACH_DEFAULT;
752  case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well
753  case NET_ONION: return REACH_PRIVATE;
754  }
755  case NET_I2P:
756  switch (ourNet) {
757  case NET_I2P: return REACH_PRIVATE;
758  default: return REACH_DEFAULT;
759  }
760  case NET_CJDNS:
761  switch (ourNet) {
762  case NET_CJDNS: return REACH_PRIVATE;
763  default: return REACH_DEFAULT;
764  }
765  case NET_TEREDO:
766  switch(ourNet) {
767  default: return REACH_DEFAULT;
768  case NET_TEREDO: return REACH_TEREDO;
769  case NET_IPV6: return REACH_IPV6_WEAK;
770  case NET_IPV4: return REACH_IPV4;
771  }
772  case NET_UNROUTABLE:
773  default:
774  switch(ourNet) {
775  default: return REACH_DEFAULT;
776  case NET_TEREDO: return REACH_TEREDO;
777  case NET_IPV6: return REACH_IPV6_WEAK;
778  case NET_IPV4: return REACH_IPV4;
779  case NET_ONION: return REACH_PRIVATE; // either from Tor, or don't care about our address
780  }
781  }
782 }
783 
785 {
786 }
787 
788 CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
789 {
790 }
791 
792 CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
793 {
794 }
795 
796 CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
797 {
798 }
799 
800 CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
801 {
802  assert(addr.sin_family == AF_INET);
803 }
804 
805 CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
806 {
807  assert(addr.sin6_family == AF_INET6);
808 }
809 
810 bool CService::SetSockAddr(const struct sockaddr *paddr)
811 {
812  switch (paddr->sa_family) {
813  case AF_INET:
814  *this = CService(*(const struct sockaddr_in*)paddr);
815  return true;
816  case AF_INET6:
817  *this = CService(*(const struct sockaddr_in6*)paddr);
818  return true;
819  default:
820  return false;
821  }
822 }
823 
824 sa_family_t CService::GetSAFamily() const
825 {
826  switch (m_net) {
827  case NET_IPV4:
828  return AF_INET;
829  case NET_IPV6:
830  case NET_CJDNS:
831  return AF_INET6;
832  default:
833  return AF_UNSPEC;
834  }
835 }
836 
837 uint16_t CService::GetPort() const
838 {
839  return port;
840 }
841 
842 bool operator==(const CService& a, const CService& b)
843 {
844  return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
845 }
846 
847 bool operator<(const CService& a, const CService& b)
848 {
849  return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
850 }
851 
864 bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
865 {
866  if (IsIPv4()) {
867  if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
868  return false;
869  *addrlen = sizeof(struct sockaddr_in);
870  struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
871  memset(paddrin, 0, *addrlen);
872  if (!GetInAddr(&paddrin->sin_addr))
873  return false;
874  paddrin->sin_family = AF_INET;
875  paddrin->sin_port = htons(port);
876  return true;
877  }
878  if (IsIPv6() || IsCJDNS()) {
879  if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
880  return false;
881  *addrlen = sizeof(struct sockaddr_in6);
882  struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
883  memset(paddrin6, 0, *addrlen);
884  if (!GetIn6Addr(&paddrin6->sin6_addr))
885  return false;
886  paddrin6->sin6_scope_id = m_scope_id;
887  paddrin6->sin6_family = AF_INET6;
888  paddrin6->sin6_port = htons(port);
889  return true;
890  }
891  return false;
892 }
893 
897 std::vector<unsigned char> CService::GetKey() const
898 {
899  auto key = GetAddrBytes();
900  key.push_back(port / 0x100); // most significant byte of our port
901  key.push_back(port & 0x0FF); // least significant byte of our port
902  return key;
903 }
904 
905 std::string CService::ToStringAddrPort() const
906 {
907  const auto port_str = strprintf("%u", port);
908 
909  if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
910  return ToStringAddr() + ":" + port_str;
911  } else {
912  return "[" + ToStringAddr() + "]:" + port_str;
913  }
914 }
915 
917  valid(false)
918 {
919  memset(netmask, 0, sizeof(netmask));
920 }
921 
922 CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
923 {
924  valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
925  (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
926  if (!valid) {
927  return;
928  }
929 
930  assert(mask <= sizeof(netmask) * 8);
931 
932  network = addr;
933 
934  uint8_t n = mask;
935  for (size_t i = 0; i < network.m_addr.size(); ++i) {
936  const uint8_t bits = n < 8 ? n : 8;
937  netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
938  network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
939  n -= bits;
940  }
941 }
942 
947 static inline int NetmaskBits(uint8_t x)
948 {
949  switch(x) {
950  case 0x00: return 0;
951  case 0x80: return 1;
952  case 0xc0: return 2;
953  case 0xe0: return 3;
954  case 0xf0: return 4;
955  case 0xf8: return 5;
956  case 0xfc: return 6;
957  case 0xfe: return 7;
958  case 0xff: return 8;
959  default: return -1;
960  }
961 }
962 
963 CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
964 {
965  valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
966  if (!valid) {
967  return;
968  }
969  // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
970  bool zeros_found = false;
971  for (auto b : mask.m_addr) {
972  const int num_bits = NetmaskBits(b);
973  if (num_bits == -1 || (zeros_found && num_bits != 0)) {
974  valid = false;
975  return;
976  }
977  if (num_bits < 8) {
978  zeros_found = true;
979  }
980  }
981 
982  assert(mask.m_addr.size() <= sizeof(netmask));
983 
984  memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
985 
986  network = addr;
987 
988  // Normalize network according to netmask
989  for (size_t x = 0; x < network.m_addr.size(); ++x) {
990  network.m_addr[x] &= netmask[x];
991  }
992 }
993 
995 {
996  switch (addr.m_net) {
997  case NET_IPV4:
998  case NET_IPV6:
999  valid = true;
1000  assert(addr.m_addr.size() <= sizeof(netmask));
1001  memset(netmask, 0xFF, addr.m_addr.size());
1002  break;
1003  case NET_ONION:
1004  case NET_I2P:
1005  case NET_CJDNS:
1006  valid = true;
1007  break;
1008  case NET_INTERNAL:
1009  case NET_UNROUTABLE:
1010  case NET_MAX:
1011  return;
1012  }
1013 
1014  network = addr;
1015 }
1016 
1021 bool CSubNet::Match(const CNetAddr &addr) const
1022 {
1023  if (!valid || !addr.IsValid() || network.m_net != addr.m_net)
1024  return false;
1025 
1026  switch (network.m_net) {
1027  case NET_IPV4:
1028  case NET_IPV6:
1029  break;
1030  case NET_ONION:
1031  case NET_I2P:
1032  case NET_CJDNS:
1033  case NET_INTERNAL:
1034  return addr == network;
1035  case NET_UNROUTABLE:
1036  case NET_MAX:
1037  return false;
1038  }
1039 
1040  assert(network.m_addr.size() == addr.m_addr.size());
1041  for (size_t x = 0; x < addr.m_addr.size(); ++x) {
1042  if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
1043  return false;
1044  }
1045  }
1046  return true;
1047 }
1048 
1049 std::string CSubNet::ToString() const
1050 {
1051  std::string suffix;
1052 
1053  switch (network.m_net) {
1054  case NET_IPV4:
1055  case NET_IPV6: {
1056  assert(network.m_addr.size() <= sizeof(netmask));
1057 
1058  uint8_t cidr = 0;
1059 
1060  for (size_t i = 0; i < network.m_addr.size(); ++i) {
1061  if (netmask[i] == 0x00) {
1062  break;
1063  }
1064  cidr += NetmaskBits(netmask[i]);
1065  }
1066 
1067  suffix = strprintf("/%u", cidr);
1068  break;
1069  }
1070  case NET_ONION:
1071  case NET_I2P:
1072  case NET_CJDNS:
1073  case NET_INTERNAL:
1074  case NET_UNROUTABLE:
1075  case NET_MAX:
1076  break;
1077  }
1078 
1079  return network.ToStringAddr() + suffix;
1080 }
1081 
1082 bool CSubNet::IsValid() const
1083 {
1084  return valid;
1085 }
1086 
1087 bool operator==(const CSubNet& a, const CSubNet& b)
1088 {
1089  return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
1090 }
1091 
1092 bool operator<(const CSubNet& a, const CSubNet& b)
1093 {
1094  return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
1095 }
if(!SetupNetworking())
Network address.
Definition: netaddress.h:112
Network GetNetClass() const
Definition: netaddress.cpp:678
void SerializeV1Array(uint8_t(&arr)[V1_SERIALIZATION_SIZE]) const
Serialize in pre-ADDRv2/BIP155 format to an array.
Definition: netaddress.h:324
std::string ToStringAddr() const
Definition: netaddress.cpp:584
prevector< ADDR_IPV6_SIZE, uint8_t > m_addr
Raw representation of the network address.
Definition: netaddress.h:118
bool IsBindAny() const
Definition: netaddress.cpp:307
bool IsRFC6052() const
Definition: netaddress.cpp:355
void SetIP(const CNetAddr &ip)
Definition: netaddress.cpp:106
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:211
bool IsRFC7343() const
Definition: netaddress.cpp:391
bool GetIn6Addr(struct in6_addr *pipv6Addr) const
Try to get our IPv6 (or CJDNS) address.
Definition: netaddress.cpp:646
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:696
bool IsCJDNS() const
Definition: netaddress.h:176
bool IsTor() const
Definition: netaddress.h:174
bool IsRoutable() const
Definition: netaddress.cpp:466
bool GetInAddr(struct in_addr *pipv4Addr) const
Try to get our IPv4 address.
Definition: netaddress.cpp:627
bool HasLinkedIPv4() const
Whether this address has a linked IPv4 address (see GetLinkedIPv4()).
Definition: netaddress.cpp:656
bool HasCJDNSPrefix() const
Definition: netaddress.h:177
Network m_net
Network to which this address belongs.
Definition: netaddress.h:123
bool IsRFC5737() const
Definition: netaddress.cpp:338
void SetLegacyIPv6(Span< const uint8_t > ipv6)
Set from a legacy IPv6 address.
Definition: netaddress.cpp:137
bool SetI2P(const std::string &addr)
Parse an I2P address and set this object to it.
Definition: netaddress.cpp:267
bool IsRFC6598() const
Definition: netaddress.cpp:333
bool IsRFC1918() const
Definition: netaddress.cpp:315
bool IsValid() const
Definition: netaddress.cpp:428
bool IsIPv4() const
Definition: netaddress.h:157
BIP155Network GetBIP155Network() const
Get the BIP155 network id of this address.
Definition: netaddress.cpp:26
uint32_t GetLinkedIPv4() const
For IPv4, mapped IPv4, SIIT translated IPv4, Teredo, 6to4 tunneled addresses, return the relevant IPv...
Definition: netaddress.cpp:661
bool SetTor(const std::string &addr)
Parse a Tor address and set this object to it.
Definition: netaddress.cpp:228
uint32_t m_scope_id
Scope id if scoped/link-local IPV6 address.
Definition: netaddress.h:129
bool IsRFC3849() const
Definition: netaddress.cpp:345
bool IsHeNet() const
Definition: netaddress.cpp:397
bool IsLocal() const
Definition: netaddress.cpp:402
static constexpr size_t V1_SERIALIZATION_SIZE
Size of CNetAddr when serialized as ADDRv1 (pre-BIP155) (in bytes).
Definition: netaddress.h:296
bool IsIPv6() const
Definition: netaddress.h:158
bool IsInternal() const
Definition: netaddress.cpp:476
bool SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
Set m_net from the provided BIP155 network id and size after validation.
Definition: netaddress.cpp:48
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:172
bool IsRFC4193() const
Definition: netaddress.cpp:373
bool IsRFC2544() const
Definition: netaddress.cpp:323
enum Network GetNetwork() const
Definition: netaddress.cpp:500
bool IsRFC6145() const
Definition: netaddress.cpp:378
int GetReachabilityFrom(const CNetAddr &paddrPartner) const
Calculates a metric for how reachable (*this) is from a given partner.
Definition: netaddress.cpp:717
CNetAddr()
Construct an unspecified IPv6 network address (::/128).
bool IsRFC3964() const
Definition: netaddress.cpp:350
bool IsRFC4380() const
Definition: netaddress.cpp:362
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:481
BIP155Network
BIP155 network ids recognized by this software.
Definition: netaddress.h:263
bool IsRFC3927() const
Definition: netaddress.cpp:328
bool IsRFC4862() const
Definition: netaddress.cpp:367
bool IsRFC4843() const
Definition: netaddress.cpp:385
bool IsI2P() const
Definition: netaddress.h:175
A hasher class for SHA-256.
Definition: sha256.h:14
void Finalize(unsigned char hash[OUTPUT_SIZE])
Definition: sha256.cpp:726
CSHA256 & Write(const unsigned char *data, size_t len)
Definition: sha256.cpp:700
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
uint16_t GetPort() const
Definition: netaddress.cpp:837
bool SetSockAddr(const struct sockaddr *paddr)
Definition: netaddress.cpp:810
sa_family_t GetSAFamily() const
Get the address family.
Definition: netaddress.cpp:824
uint16_t port
Definition: netaddress.h:533
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:864
std::string ToStringAddrPort() const
Definition: netaddress.cpp:905
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:897
bool valid
Is this value valid? (only used to signal parse errors)
Definition: netaddress.h:487
CNetAddr network
Network (base) address.
Definition: netaddress.h:483
uint8_t netmask[16]
Netmask, in network byte order.
Definition: netaddress.h:485
std::string ToString() const
bool IsValid() const
CSubNet()
Construct an invalid subnet (empty, Match() always returns false).
Definition: netaddress.cpp:916
bool Match(const CNetAddr &addr) const
Definition: sha3.h:17
SHA3_256 & Write(Span< const unsigned char > data)
Definition: sha3.cpp:106
SHA3_256 & Finalize(Span< unsigned char > output)
Definition: sha3.cpp:136
static constexpr size_t OUTPUT_SIZE
Definition: sha3.h:33
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
constexpr std::size_t size() const noexcept
Definition: span.h:187
constexpr C * data() const noexcept
Definition: span.h:174
constexpr C * end() const noexcept
Definition: span.h:176
constexpr C * begin() const noexcept
Definition: span.h:175
Implements a drop-in replacement for std::vector<T> which stores up to N elements directly (without h...
Definition: prevector.h:37
size_type size() const
Definition: prevector.h:296
value_type * data()
Definition: prevector.h:532
iterator begin()
Definition: prevector.h:304
iterator end()
Definition: prevector.h:306
void assign(size_type n, const T &val)
Definition: prevector.h:225
static uint16_t ReadBE16(const unsigned char *ptr)
Definition: common.h:52
static uint32_t ReadBE32(const unsigned char *ptr)
Definition: common.h:59
@ I2P
Definition: logging.h:63
static const unsigned char VERSION[]
Definition: netaddress.cpp:187
static constexpr size_t CHECKSUM_LEN
Definition: netaddress.cpp:186
static void Checksum(Span< const uint8_t > addr_pubkey, uint8_t(&checksum)[CHECKSUM_LEN])
Definition: netaddress.cpp:190
static constexpr size_t TOTAL_LEN
Definition: netaddress.cpp:188
bool HasPrefix(const T1 &obj, const std::array< uint8_t, PREFIX_LEN > &prefix)
Check whether a container begins with the given prefix.
Definition: string.h:160
bool ContainsNoNUL(std::string_view str) noexcept
Check if a string does not contain any embedded NUL (\0) characters.
Definition: string.h:136
static const int NET_TEREDO
Definition: netaddress.cpp:708
static int NetmaskBits(uint8_t x)
Definition: netaddress.cpp:947
bool operator==(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:607
std::string OnionToString(Span< const uint8_t > addr)
Definition: netaddress.cpp:573
static std::string IPv6ToString(Span< const uint8_t > a, uint32_t scope_id)
Definition: netaddress.cpp:518
static std::string IPv4ToString(Span< const uint8_t > a)
Definition: netaddress.cpp:511
bool operator<(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:612
static int GetExtNetwork(const CNetAddr &addr)
Definition: netaddress.cpp:709
static constexpr size_t ADDR_CJDNS_SIZE
Size of CJDNS address (in bytes).
Definition: netaddress.h:98
static constexpr size_t ADDR_TORV3_SIZE
Size of TORv3 address (in bytes).
Definition: netaddress.h:92
static constexpr size_t ADDR_I2P_SIZE
Size of I2P address (in bytes).
Definition: netaddress.h:95
static constexpr size_t ADDR_INTERNAL_SIZE
Size of "internal" (NET_INTERNAL) address (in bytes).
Definition: netaddress.h:101
static const std::array< uint8_t, 6 > INTERNAL_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded "internal" address.
Definition: netaddress.h:76
static constexpr size_t ADDR_IPV4_SIZE
Size of IPv4 address (in bytes).
Definition: netaddress.h:85
static const std::array< uint8_t, 6 > TORV2_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded TORv2 address.
Definition: netaddress.h:68
Network
A network type.
Definition: netaddress.h:32
@ NET_I2P
I2P.
Definition: netaddress.h:46
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:49
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:56
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:43
@ NET_IPV6
IPv6.
Definition: netaddress.h:40
@ NET_IPV4
IPv4.
Definition: netaddress.h:37
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:34
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:53
static const std::array< uint8_t, 12 > IPV4_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded IPv4 address.
Definition: netaddress.h:61
static constexpr size_t ADDR_IPV6_SIZE
Size of IPv6 address (in bytes).
Definition: netaddress.h:88
@ IPV4
Definition: netbase.cpp:273
@ IPV6
Definition: netbase.cpp:275
const char * prefix
Definition: rest.cpp:1006
const char * name
Definition: rest.cpp:49
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1162
std::string EncodeBase32(Span< const unsigned char > input, bool pad)
Base32 encode.
std::string ToLower(std::string_view str)
Returns the lowercase equivalent of the given string.
std::optional< std::vector< unsigned char > > DecodeBase32(std::string_view str)
assert(!tx.IsCoinBase())