Bitcoin Core  27.99.0
P2P Digital Currency
lockedpool.cpp
Go to the documentation of this file.
1 // Copyright (c) 2016-2022 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <support/lockedpool.h>
6 #include <support/cleanse.h>
7 
8 #ifdef WIN32
9 #include <windows.h>
10 #else
11 #include <sys/mman.h> // for mmap
12 #include <sys/resource.h> // for getrlimit
13 #include <limits.h> // for PAGESIZE
14 #include <unistd.h> // for sysconf
15 #endif
16 
17 #include <algorithm>
18 #include <limits>
19 #include <stdexcept>
20 #include <utility>
21 #ifdef ARENA_DEBUG
22 #include <iomanip>
23 #include <iostream>
24 #endif
25 
27 
28 /*******************************************************************************/
29 // Utilities
30 //
32 static inline size_t align_up(size_t x, size_t align)
33 {
34  return (x + align - 1) & ~(align - 1);
35 }
36 
37 /*******************************************************************************/
38 // Implementation: Arena
39 
40 Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
41  base(base_in), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
42 {
43  // Start with one free chunk that covers the entire arena
44  auto it = size_to_free_chunk.emplace(size_in, base);
45  chunks_free.emplace(base, it);
46  chunks_free_end.emplace(static_cast<char*>(base) + size_in, it);
47 }
48 
49 Arena::~Arena() = default;
50 
51 void* Arena::alloc(size_t size)
52 {
53  // Round to next multiple of alignment
54  size = align_up(size, alignment);
55 
56  // Don't handle zero-sized chunks
57  if (size == 0)
58  return nullptr;
59 
60  // Pick a large enough free-chunk. Returns an iterator pointing to the first element that is not less than key.
61  // This allocation strategy is best-fit. According to "Dynamic Storage Allocation: A Survey and Critical Review",
62  // Wilson et. al. 1995, https://www.scs.stanford.edu/14wi-cs140/sched/readings/wilson.pdf, best-fit and first-fit
63  // policies seem to work well in practice.
64  auto size_ptr_it = size_to_free_chunk.lower_bound(size);
65  if (size_ptr_it == size_to_free_chunk.end())
66  return nullptr;
67 
68  // Create the used-chunk, taking its space from the end of the free-chunk
69  const size_t size_remaining = size_ptr_it->first - size;
70  char* const free_chunk = static_cast<char*>(size_ptr_it->second);
71  auto allocated = chunks_used.emplace(free_chunk + size_remaining, size).first;
72  chunks_free_end.erase(free_chunk + size_ptr_it->first);
73  if (size_ptr_it->first == size) {
74  // whole chunk is used up
75  chunks_free.erase(size_ptr_it->second);
76  } else {
77  // still some memory left in the chunk
78  auto it_remaining = size_to_free_chunk.emplace(size_remaining, size_ptr_it->second);
79  chunks_free[size_ptr_it->second] = it_remaining;
80  chunks_free_end.emplace(free_chunk + size_remaining, it_remaining);
81  }
82  size_to_free_chunk.erase(size_ptr_it);
83 
84  return allocated->first;
85 }
86 
87 void Arena::free(void *ptr)
88 {
89  // Freeing the nullptr pointer is OK.
90  if (ptr == nullptr) {
91  return;
92  }
93 
94  // Remove chunk from used map
95  auto i = chunks_used.find(ptr);
96  if (i == chunks_used.end()) {
97  throw std::runtime_error("Arena: invalid or double free");
98  }
99  auto freed = std::make_pair(static_cast<char*>(i->first), i->second);
100  chunks_used.erase(i);
101 
102  // coalesce freed with previous chunk
103  auto prev = chunks_free_end.find(freed.first);
104  if (prev != chunks_free_end.end()) {
105  freed.first -= prev->second->first;
106  freed.second += prev->second->first;
107  size_to_free_chunk.erase(prev->second);
108  chunks_free_end.erase(prev);
109  }
110 
111  // coalesce freed with chunk after freed
112  auto next = chunks_free.find(freed.first + freed.second);
113  if (next != chunks_free.end()) {
114  freed.second += next->second->first;
115  size_to_free_chunk.erase(next->second);
116  chunks_free.erase(next);
117  }
118 
119  // Add/set space with coalesced free chunk
120  auto it = size_to_free_chunk.emplace(freed.second, freed.first);
121  chunks_free[freed.first] = it;
122  chunks_free_end[freed.first + freed.second] = it;
123 }
124 
126 {
127  Arena::Stats r{ 0, 0, 0, chunks_used.size(), chunks_free.size() };
128  for (const auto& chunk: chunks_used)
129  r.used += chunk.second;
130  for (const auto& chunk: chunks_free)
131  r.free += chunk.second->first;
132  r.total = r.used + r.free;
133  return r;
134 }
135 
136 #ifdef ARENA_DEBUG
137 static void printchunk(void* base, size_t sz, bool used) {
138  std::cout <<
139  "0x" << std::hex << std::setw(16) << std::setfill('0') << base <<
140  " 0x" << std::hex << std::setw(16) << std::setfill('0') << sz <<
141  " 0x" << used << std::endl;
142 }
143 void Arena::walk() const
144 {
145  for (const auto& chunk: chunks_used)
146  printchunk(chunk.first, chunk.second, true);
147  std::cout << std::endl;
148  for (const auto& chunk: chunks_free)
149  printchunk(chunk.first, chunk.second->first, false);
150  std::cout << std::endl;
151 }
152 #endif
153 
154 /*******************************************************************************/
155 // Implementation: Win32LockedPageAllocator
156 
157 #ifdef WIN32
160 class Win32LockedPageAllocator: public LockedPageAllocator
161 {
162 public:
163  Win32LockedPageAllocator();
164  void* AllocateLocked(size_t len, bool *lockingSuccess) override;
165  void FreeLocked(void* addr, size_t len) override;
166  size_t GetLimit() override;
167 private:
168  size_t page_size;
169 };
170 
171 Win32LockedPageAllocator::Win32LockedPageAllocator()
172 {
173  // Determine system page size in bytes
174  SYSTEM_INFO sSysInfo;
175  GetSystemInfo(&sSysInfo);
176  page_size = sSysInfo.dwPageSize;
177 }
178 void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
179 {
180  len = align_up(len, page_size);
181  void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
182  if (addr) {
183  // VirtualLock is used to attempt to keep keying material out of swap. Note
184  // that it does not provide this as a guarantee, but, in practice, memory
185  // that has been VirtualLock'd almost never gets written to the pagefile
186  // except in rare circumstances where memory is extremely low.
187  *lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
188  }
189  return addr;
190 }
191 void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
192 {
193  len = align_up(len, page_size);
194  memory_cleanse(addr, len);
195  VirtualUnlock(const_cast<void*>(addr), len);
196 }
197 
198 size_t Win32LockedPageAllocator::GetLimit()
199 {
200  size_t min, max;
201  if(GetProcessWorkingSetSize(GetCurrentProcess(), &min, &max) != 0) {
202  return min;
203  }
204  return std::numeric_limits<size_t>::max();
205 }
206 #endif
207 
208 /*******************************************************************************/
209 // Implementation: PosixLockedPageAllocator
210 
211 #ifndef WIN32
216 {
217 public:
219  void* AllocateLocked(size_t len, bool *lockingSuccess) override;
220  void FreeLocked(void* addr, size_t len) override;
221  size_t GetLimit() override;
222 private:
223  size_t page_size;
224 };
225 
227 {
228  // Determine system page size in bytes
229 #if defined(PAGESIZE) // defined in limits.h
230  page_size = PAGESIZE;
231 #else // assume some POSIX OS
232  page_size = sysconf(_SC_PAGESIZE);
233 #endif
234 }
235 
236 void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
237 {
238  void *addr;
239  len = align_up(len, page_size);
240  addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
241  if (addr == MAP_FAILED) {
242  return nullptr;
243  }
244  if (addr) {
245  *lockingSuccess = mlock(addr, len) == 0;
246 #if defined(MADV_DONTDUMP) // Linux
247  madvise(addr, len, MADV_DONTDUMP);
248 #elif defined(MADV_NOCORE) // FreeBSD
249  madvise(addr, len, MADV_NOCORE);
250 #endif
251  }
252  return addr;
253 }
254 void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
255 {
256  len = align_up(len, page_size);
257  memory_cleanse(addr, len);
258  munlock(addr, len);
259  munmap(addr, len);
260 }
262 {
263 #ifdef RLIMIT_MEMLOCK
264  struct rlimit rlim;
265  if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
266  if (rlim.rlim_cur != RLIM_INFINITY) {
267  return rlim.rlim_cur;
268  }
269  }
270 #endif
271  return std::numeric_limits<size_t>::max();
272 }
273 #endif
274 
275 /*******************************************************************************/
276 // Implementation: LockedPool
277 
278 LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in)
279  : allocator(std::move(allocator_in)), lf_cb(lf_cb_in)
280 {
281 }
282 
283 LockedPool::~LockedPool() = default;
284 
285 void* LockedPool::alloc(size_t size)
286 {
287  std::lock_guard<std::mutex> lock(mutex);
288 
289  // Don't handle impossible sizes
290  if (size == 0 || size > ARENA_SIZE)
291  return nullptr;
292 
293  // Try allocating from each current arena
294  for (auto &arena: arenas) {
295  void *addr = arena.alloc(size);
296  if (addr) {
297  return addr;
298  }
299  }
300  // If that fails, create a new one
302  return arenas.back().alloc(size);
303  }
304  return nullptr;
305 }
306 
307 void LockedPool::free(void *ptr)
308 {
309  std::lock_guard<std::mutex> lock(mutex);
310  // TODO we can do better than this linear search by keeping a map of arena
311  // extents to arena, and looking up the address.
312  for (auto &arena: arenas) {
313  if (arena.addressInArena(ptr)) {
314  arena.free(ptr);
315  return;
316  }
317  }
318  throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
319 }
320 
322 {
323  std::lock_guard<std::mutex> lock(mutex);
324  LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0};
325  for (const auto &arena: arenas) {
326  Arena::Stats i = arena.stats();
327  r.used += i.used;
328  r.free += i.free;
329  r.total += i.total;
330  r.chunks_used += i.chunks_used;
331  r.chunks_free += i.chunks_free;
332  }
333  return r;
334 }
335 
336 bool LockedPool::new_arena(size_t size, size_t align)
337 {
338  bool locked;
339  // If this is the first arena, handle this specially: Cap the upper size
340  // by the process limit. This makes sure that the first arena will at least
341  // be locked. An exception to this is if the process limit is 0:
342  // in this case no memory can be locked at all so we'll skip past this logic.
343  if (arenas.empty()) {
344  size_t limit = allocator->GetLimit();
345  if (limit > 0) {
346  size = std::min(size, limit);
347  }
348  }
349  void *addr = allocator->AllocateLocked(size, &locked);
350  if (!addr) {
351  return false;
352  }
353  if (locked) {
354  cumulative_bytes_locked += size;
355  } else if (lf_cb) { // Call the locking-failed callback if locking failed
356  if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
357  allocator->FreeLocked(addr, size);
358  return false;
359  }
360  }
361  arenas.emplace_back(allocator.get(), addr, size, align);
362  return true;
363 }
364 
365 LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
366  Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
367 {
368 }
370 {
371  allocator->FreeLocked(base, size);
372 }
373 
374 /*******************************************************************************/
375 // Implementation: LockedPoolManager
376 //
377 LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator_in):
378  LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed)
379 {
380 }
381 
383 {
384  // TODO: log something but how? without including util.h
385  return true;
386 }
387 
389 {
390  // Using a local static instance guarantees that the object is initialized
391  // when it's first needed and also deinitialized after all objects that use
392  // it are done with it. I can think of one unlikely scenario where we may
393  // have a static deinitialization order/problem, but the check in
394  // LockedPoolManagerBase's destructor helps us detect if that ever happens.
395 #ifdef WIN32
396  std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
397 #else
398  std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
399 #endif
400  static LockedPoolManager instance(std::move(allocator));
401  LockedPoolManager::_instance = &instance;
402 }
void * base
Base address of arena.
Definition: lockedpool.h:106
size_t alignment
Minimum chunk alignment.
Definition: lockedpool.h:110
ChunkToSizeMap chunks_free_end
Map from end of free chunk to its node in size_to_free_chunk.
Definition: lockedpool.h:100
std::unordered_map< void *, size_t > chunks_used
Map from begin of used chunk to its size.
Definition: lockedpool.h:103
void * alloc(size_t size)
Allocate size bytes from this arena.
Definition: lockedpool.cpp:51
SizeToChunkSortedMap size_to_free_chunk
Map to enable O(log(n)) best-fit allocation, as it's sorted by size.
Definition: lockedpool.h:94
Arena(void *base, size_t size, size_t alignment)
Definition: lockedpool.cpp:40
Stats stats() const
Get arena usage statistics.
Definition: lockedpool.cpp:125
ChunkToSizeMap chunks_free
Map from begin of free chunk to its node in size_to_free_chunk.
Definition: lockedpool.h:98
virtual ~Arena()
void free(void *ptr)
Free a previously allocated chunk of memory.
Definition: lockedpool.cpp:87
OS-dependent allocation and deallocation of locked/pinned memory pages.
Definition: lockedpool.h:20
virtual void * AllocateLocked(size_t len, bool *lockingSuccess)=0
Allocate and lock memory pages.
virtual void FreeLocked(void *addr, size_t len)=0
Unlock and free memory pages.
virtual size_t GetLimit()=0
Get the total limit on the amount of memory that may be locked by this process, in bytes.
LockedPageArena(LockedPageAllocator *alloc_in, void *base_in, size_t size, size_t align)
Definition: lockedpool.cpp:365
Pool for locked memory chunks.
Definition: lockedpool.h:127
void free(void *ptr)
Free a previously allocated chunk of memory.
Definition: lockedpool.cpp:307
Stats stats() const
Get pool usage statistics.
Definition: lockedpool.cpp:321
std::unique_ptr< LockedPageAllocator > allocator
Definition: lockedpool.h:183
void * alloc(size_t size)
Allocate size bytes from this arena.
Definition: lockedpool.cpp:285
size_t cumulative_bytes_locked
Definition: lockedpool.h:201
LockedPool(std::unique_ptr< LockedPageAllocator > allocator, LockingFailed_Callback lf_cb_in=nullptr)
Create a new LockedPool.
Definition: lockedpool.cpp:278
LockingFailed_Callback lf_cb
Definition: lockedpool.h:200
std::list< LockedPageArena > arenas
Definition: lockedpool.h:199
bool new_arena(size_t size, size_t align)
Definition: lockedpool.cpp:336
static const size_t ARENA_ALIGN
Chunk alignment.
Definition: lockedpool.h:138
static const size_t ARENA_SIZE
Size of one arena of locked memory.
Definition: lockedpool.h:134
std::mutex mutex
Mutex protects access to this pool's data structures, including arenas.
Definition: lockedpool.h:204
Singleton class to keep track of locked (ie, non-swappable) memory, for use in std::allocator templat...
Definition: lockedpool.h:219
LockedPoolManager(std::unique_ptr< LockedPageAllocator > allocator)
Definition: lockedpool.cpp:377
static bool LockingFailed()
Called when locking fails, warn the user here.
Definition: lockedpool.cpp:382
static LockedPoolManager * _instance
Definition: lockedpool.h:237
static void CreateInstance()
Create a new LockedPoolManager specialized to the OS.
Definition: lockedpool.cpp:388
LockedPageAllocator specialized for OSes that don't try to be special snowflakes.
Definition: lockedpool.cpp:216
void * AllocateLocked(size_t len, bool *lockingSuccess) override
Allocate and lock memory pages.
Definition: lockedpool.cpp:236
void FreeLocked(void *addr, size_t len) override
Unlock and free memory pages.
Definition: lockedpool.cpp:254
size_t GetLimit() override
Get the total limit on the amount of memory that may be locked by this process, in bytes.
Definition: lockedpool.cpp:261
void memory_cleanse(void *ptr, size_t len)
Secure overwrite a buffer (possibly containing secret data) with zero-bytes.
Definition: cleanse.cpp:14
Memory statistics.
Definition: lockedpool.h:59
size_t used
Definition: lockedpool.h:60
size_t chunks_used
Definition: lockedpool.h:63
size_t total
Definition: lockedpool.h:62
size_t free
Definition: lockedpool.h:61
size_t chunks_free
Definition: lockedpool.h:64
Memory statistics.
Definition: lockedpool.h:146
static size_t align_up(size_t x, size_t align)
Align up to power of 2.
Definition: lockedpool.cpp:32