Bitcoin Core  27.99.0
P2P Digital Currency
feefrac.cpp
Go to the documentation of this file.
1 // Copyright (c) 2024 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <util/feefrac.h>
7 #include <test/fuzz/fuzz.h>
8 #include <test/fuzz/util.h>
9 
10 #include <compare>
11 #include <cstdint>
12 #include <iostream>
13 
14 namespace {
15 
17 std::array<uint32_t, 4> Mul128(uint64_t a, uint64_t b)
18 {
19  std::array<uint32_t, 4> ret{0, 0, 0, 0};
20 
22  auto add_fn = [&](uint64_t v, int pos) {
23  uint64_t accum{0};
24  for (int i = 0; i + pos < 4; ++i) {
25  // Add current value at limb pos in ret.
26  accum += ret[3 - pos - i];
27  // Add low or high half of v.
28  if (i == 0) accum += v & 0xffffffff;
29  if (i == 1) accum += v >> 32;
30  // Store lower half of result in limb pos in ret.
31  ret[3 - pos - i] = accum & 0xffffffff;
32  // Leave carry in accum.
33  accum >>= 32;
34  }
35  // Make sure no overflow.
36  assert(accum == 0);
37  };
38 
39  // Multiply the 4 individual limbs (schoolbook multiply, with base 2^32).
40  add_fn((a & 0xffffffff) * (b & 0xffffffff), 0);
41  add_fn((a >> 32) * (b & 0xffffffff), 1);
42  add_fn((a & 0xffffffff) * (b >> 32), 1);
43  add_fn((a >> 32) * (b >> 32), 2);
44  return ret;
45 }
46 
47 /* comparison helper for std::array */
48 std::strong_ordering compare_arrays(const std::array<uint32_t, 4>& a, const std::array<uint32_t, 4>& b) {
49  for (size_t i = 0; i < a.size(); ++i) {
50  if (a[i] != b[i]) return a[i] <=> b[i];
51  }
52  return std::strong_ordering::equal;
53 }
54 
55 std::strong_ordering MulCompare(int64_t a1, int64_t a2, int64_t b1, int64_t b2)
56 {
57  // Compute and compare signs.
58  int sign_a = (a1 == 0 ? 0 : a1 < 0 ? -1 : 1) * (a2 == 0 ? 0 : a2 < 0 ? -1 : 1);
59  int sign_b = (b1 == 0 ? 0 : b1 < 0 ? -1 : 1) * (b2 == 0 ? 0 : b2 < 0 ? -1 : 1);
60  if (sign_a != sign_b) return sign_a <=> sign_b;
61 
62  // Compute absolute values.
63  uint64_t abs_a1 = static_cast<uint64_t>(a1), abs_a2 = static_cast<uint64_t>(a2);
64  uint64_t abs_b1 = static_cast<uint64_t>(b1), abs_b2 = static_cast<uint64_t>(b2);
65  // Use (~x + 1) instead of the equivalent (-x) to silence the linter; mod 2^64 behavior is
66  // intentional here.
67  if (a1 < 0) abs_a1 = ~abs_a1 + 1;
68  if (a2 < 0) abs_a2 = ~abs_a2 + 1;
69  if (b1 < 0) abs_b1 = ~abs_b1 + 1;
70  if (b2 < 0) abs_b2 = ~abs_b2 + 1;
71 
72  // Compute products of absolute values.
73  auto mul_abs_a = Mul128(abs_a1, abs_a2);
74  auto mul_abs_b = Mul128(abs_b1, abs_b2);
75  if (sign_a < 0) {
76  return compare_arrays(mul_abs_b, mul_abs_a);
77  } else {
78  return compare_arrays(mul_abs_a, mul_abs_b);
79  }
80 }
81 
82 } // namespace
83 
84 FUZZ_TARGET(feefrac)
85 {
86  FuzzedDataProvider provider(buffer.data(), buffer.size());
87 
88  int64_t f1 = provider.ConsumeIntegral<int64_t>();
89  int32_t s1 = provider.ConsumeIntegral<int32_t>();
90  if (s1 == 0) f1 = 0;
91  FeeFrac fr1(f1, s1);
92  assert(fr1.IsEmpty() == (s1 == 0));
93 
94  int64_t f2 = provider.ConsumeIntegral<int64_t>();
95  int32_t s2 = provider.ConsumeIntegral<int32_t>();
96  if (s2 == 0) f2 = 0;
97  FeeFrac fr2(f2, s2);
98  assert(fr2.IsEmpty() == (s2 == 0));
99 
100  // Feerate comparisons
101  auto cmp_feerate = MulCompare(f1, s2, f2, s1);
102  assert(FeeRateCompare(fr1, fr2) == cmp_feerate);
103  assert((fr1 << fr2) == std::is_lt(cmp_feerate));
104  assert((fr1 >> fr2) == std::is_gt(cmp_feerate));
105 
106  // Compare with manual invocation of FeeFrac::Mul.
107  auto cmp_mul = FeeFrac::Mul(f1, s2) <=> FeeFrac::Mul(f2, s1);
108  assert(cmp_mul == cmp_feerate);
109 
110  // Same, but using FeeFrac::MulFallback.
111  auto cmp_fallback = FeeFrac::MulFallback(f1, s2) <=> FeeFrac::MulFallback(f2, s1);
112  assert(cmp_fallback == cmp_feerate);
113 
114  // Total order comparisons
115  auto cmp_total = std::is_eq(cmp_feerate) ? (s2 <=> s1) : cmp_feerate;
116  assert((fr1 <=> fr2) == cmp_total);
117  assert((fr1 < fr2) == std::is_lt(cmp_total));
118  assert((fr1 > fr2) == std::is_gt(cmp_total));
119  assert((fr1 <= fr2) == std::is_lteq(cmp_total));
120  assert((fr1 >= fr2) == std::is_gteq(cmp_total));
121  assert((fr1 == fr2) == std::is_eq(cmp_total));
122  assert((fr1 != fr2) == std::is_neq(cmp_total));
123 }
int ret
Data structure storing a fee and size, ordered by increasing fee/size.
Definition: feefrac.h:39
static constexpr auto Mul
Definition: feefrac.h:60
static std::pair< int64_t, uint32_t > MulFallback(int64_t a, int32_t b) noexcept
Fallback version for Mul (see below).
Definition: feefrac.h:44
bool IsEmpty() const noexcept
Check if this is empty (size and fee are 0).
Definition: feefrac.h:76
FUZZ_TARGET(feefrac)
Definition: feefrac.cpp:84
assert(!tx.IsCoinBase())