Dogecoin Core  1.14.2
P2P Digital Currency
arith_uint256.cpp
Go to the documentation of this file.
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2016 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 
6 #include "arith_uint256.h"
7 
8 #include "uint256.h"
9 #include "utilstrencodings.h"
10 #include "crypto/common.h"
11 
12 #include <stdio.h>
13 #include <string.h>
14 
15 template <unsigned int BITS>
16 base_uint<BITS>::base_uint(const std::string& str)
17 {
18  SetHex(str);
19 }
20 
21 template <unsigned int BITS>
23 {
24  base_uint<BITS> a(*this);
25  for (int i = 0; i < WIDTH; i++)
26  pn[i] = 0;
27  int k = shift / 32;
28  shift = shift % 32;
29  for (int i = 0; i < WIDTH; i++) {
30  if (i + k + 1 < WIDTH && shift != 0)
31  pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
32  if (i + k < WIDTH)
33  pn[i + k] |= (a.pn[i] << shift);
34  }
35  return *this;
36 }
37 
38 template <unsigned int BITS>
40 {
41  base_uint<BITS> a(*this);
42  for (int i = 0; i < WIDTH; i++)
43  pn[i] = 0;
44  int k = shift / 32;
45  shift = shift % 32;
46  for (int i = 0; i < WIDTH; i++) {
47  if (i - k - 1 >= 0 && shift != 0)
48  pn[i - k - 1] |= (a.pn[i] << (32 - shift));
49  if (i - k >= 0)
50  pn[i - k] |= (a.pn[i] >> shift);
51  }
52  return *this;
53 }
54 
55 template <unsigned int BITS>
57 {
58  uint64_t carry = 0;
59  for (int i = 0; i < WIDTH; i++) {
60  uint64_t n = carry + (uint64_t)b32 * pn[i];
61  pn[i] = n & 0xffffffff;
62  carry = n >> 32;
63  }
64  return *this;
65 }
66 
67 template <unsigned int BITS>
69 {
70  base_uint<BITS> a = *this;
71  *this = 0;
72  for (int j = 0; j < WIDTH; j++) {
73  uint64_t carry = 0;
74  for (int i = 0; i + j < WIDTH; i++) {
75  uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
76  pn[i + j] = n & 0xffffffff;
77  carry = n >> 32;
78  }
79  }
80  return *this;
81 }
82 
83 template <unsigned int BITS>
85 {
86  base_uint<BITS> div = b; // make a copy, so we can shift.
87  base_uint<BITS> num = *this; // make a copy, so we can subtract.
88  *this = 0; // the quotient.
89  int num_bits = num.bits();
90  int div_bits = div.bits();
91  if (div_bits == 0)
92  throw uint_error("Division by zero");
93  if (div_bits > num_bits) // the result is certainly 0.
94  return *this;
95  int shift = num_bits - div_bits;
96  div <<= shift; // shift so that div and num align.
97  while (shift >= 0) {
98  if (num >= div) {
99  num -= div;
100  pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
101  }
102  div >>= 1; // shift back.
103  shift--;
104  }
105  // num now contains the remainder of the division.
106  return *this;
107 }
108 
109 template <unsigned int BITS>
111 {
112  for (int i = WIDTH - 1; i >= 0; i--) {
113  if (pn[i] < b.pn[i])
114  return -1;
115  if (pn[i] > b.pn[i])
116  return 1;
117  }
118  return 0;
119 }
120 
121 template <unsigned int BITS>
122 bool base_uint<BITS>::EqualTo(uint64_t b) const
123 {
124  for (int i = WIDTH - 1; i >= 2; i--) {
125  if (pn[i])
126  return false;
127  }
128  if (pn[1] != (b >> 32))
129  return false;
130  if (pn[0] != (b & 0xfffffffful))
131  return false;
132  return true;
133 }
134 
135 template <unsigned int BITS>
137 {
138  double ret = 0.0;
139  double fact = 1.0;
140  for (int i = 0; i < WIDTH; i++) {
141  ret += fact * pn[i];
142  fact *= 4294967296.0;
143  }
144  return ret;
145 }
146 
147 template <unsigned int BITS>
148 std::string base_uint<BITS>::GetHex() const
149 {
150  return ArithToUint256(*this).GetHex();
151 }
152 
153 template <unsigned int BITS>
154 void base_uint<BITS>::SetHex(const char* psz)
155 {
156  *this = UintToArith256(uint256S(psz));
157 }
158 
159 template <unsigned int BITS>
160 void base_uint<BITS>::SetHex(const std::string& str)
161 {
162  SetHex(str.c_str());
163 }
164 
165 template <unsigned int BITS>
166 std::string base_uint<BITS>::ToString() const
167 {
168  return (GetHex());
169 }
170 
171 template <unsigned int BITS>
172 unsigned int base_uint<BITS>::bits() const
173 {
174  for (int pos = WIDTH - 1; pos >= 0; pos--) {
175  if (pn[pos]) {
176  for (int bits = 31; bits > 0; bits--) {
177  if (pn[pos] & 1 << bits)
178  return 32 * pos + bits + 1;
179  }
180  return 32 * pos + 1;
181  }
182  }
183  return 0;
184 }
185 
186 // Explicit instantiations for base_uint<256>
187 template base_uint<256>::base_uint(const std::string&);
188 template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
189 template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
190 template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
193 template int base_uint<256>::CompareTo(const base_uint<256>&) const;
194 template bool base_uint<256>::EqualTo(uint64_t) const;
195 template double base_uint<256>::getdouble() const;
196 template std::string base_uint<256>::GetHex() const;
197 template std::string base_uint<256>::ToString() const;
198 template void base_uint<256>::SetHex(const char*);
199 template void base_uint<256>::SetHex(const std::string&);
200 template unsigned int base_uint<256>::bits() const;
201 
202 // This implementation directly uses shifts instead of going
203 // through an intermediate MPI representation.
204 arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
205 {
206  int nSize = nCompact >> 24;
207  uint32_t nWord = nCompact & 0x007fffff;
208  if (nSize <= 3) {
209  nWord >>= 8 * (3 - nSize);
210  *this = nWord;
211  } else {
212  *this = nWord;
213  *this <<= 8 * (nSize - 3);
214  }
215  if (pfNegative)
216  *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
217  if (pfOverflow)
218  *pfOverflow = nWord != 0 && ((nSize > 34) ||
219  (nWord > 0xff && nSize > 33) ||
220  (nWord > 0xffff && nSize > 32));
221  return *this;
222 }
223 
224 uint32_t arith_uint256::GetCompact(bool fNegative) const
225 {
226  int nSize = (bits() + 7) / 8;
227  uint32_t nCompact = 0;
228  if (nSize <= 3) {
229  nCompact = GetLow64() << 8 * (3 - nSize);
230  } else {
231  arith_uint256 bn = *this >> 8 * (nSize - 3);
232  nCompact = bn.GetLow64();
233  }
234  // The 0x00800000 bit denotes the sign.
235  // Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
236  if (nCompact & 0x00800000) {
237  nCompact >>= 8;
238  nSize++;
239  }
240  assert((nCompact & ~0x007fffff) == 0);
241  assert(nSize < 256);
242  nCompact |= nSize << 24;
243  nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
244  return nCompact;
245 }
246 
248 {
249  uint256 b;
250  for(int x=0; x<a.WIDTH; ++x)
251  WriteLE32(b.begin() + x*4, a.pn[x]);
252  return b;
253 }
255 {
256  arith_uint256 b;
257  for(int x=0; x<b.WIDTH; ++x)
258  b.pn[x] = ReadLE32(a.begin() + x*4);
259  return b;
260 }
arith_uint256 UintToArith256(const uint256 &a)
uint256 ArithToUint256(const arith_uint256 &a)
256-bit unsigned big integer.
uint32_t GetCompact(bool fNegative=false) const
arith_uint256 & SetCompact(uint32_t nCompact, bool *pfNegative=NULL, bool *pfOverflow=NULL)
The "compact" format is a representation of a whole number N using an unsigned 32bit number similar t...
std::string GetHex() const
Definition: uint256.cpp:21
unsigned char * begin()
Definition: uint256.h:56
Template base class for unsigned big integers.
Definition: arith_uint256.h:26
uint32_t pn[WIDTH]
Definition: arith_uint256.h:29
int CompareTo(const base_uint &b) const
base_uint & operator>>=(unsigned int shift)
base_uint & operator*=(uint32_t b32)
bool EqualTo(uint64_t b) const
double getdouble() const
base_uint & operator<<=(unsigned int shift)
std::string ToString() const
base_uint & operator/=(const base_uint &b)
uint64_t GetLow64() const
void SetHex(const char *psz)
std::string GetHex() const
unsigned int bits() const
Returns the position of the highest bit set plus one, or zero if the value is zero.
256-bit opaque blob.
Definition: uint256.h:123
uint256 uint256S(const char *str)
Definition: uint256.h:144