Bitcoin ABC 0.26.3
P2P Digital Currency
Loading...
Searching...
No Matches
bench_internal.c
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2014-2015 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6#include <stdio.h>
7
8#include "include/secp256k1.h"
9
10#include "assumptions.h"
11#include "util.h"
12#include "hash_impl.h"
13#include "field_impl.h"
14#include "group_impl.h"
15#include "scalar_impl.h"
16#include "ecmult_const_impl.h"
17#include "ecmult_impl.h"
18#include "bench.h"
19#include "secp256k1.c"
20
21typedef struct {
26 unsigned char data[64];
27 int wnaf[256];
28} bench_inv;
29
30void bench_setup(void* arg) {
31 bench_inv *data = (bench_inv*)arg;
32
33 static const unsigned char init[4][32] = {
34 /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
35 and the (implied affine) X coordinate of gej[0]. */
36 {
37 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
38 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
39 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
40 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
41 },
42 /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
43 and the (implied affine) X coordinate of gej[1]. */
44 {
45 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
46 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
47 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
48 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
49 },
50 /* Initializer for fe[2] and the Z coordinate of gej[0]. */
51 {
52 0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
53 0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
54 0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
55 0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
56 },
57 /* Initializer for fe[3] and the Z coordinate of gej[1]. */
58 {
59 0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
60 0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
61 0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
62 0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
63 }
64 };
65
68 secp256k1_fe_set_b32(&data->fe[0], init[0]);
69 secp256k1_fe_set_b32(&data->fe[1], init[1]);
70 secp256k1_fe_set_b32(&data->fe[2], init[2]);
71 secp256k1_fe_set_b32(&data->fe[3], init[3]);
72 CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
73 CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
74 secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
75 secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
76 secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
77 secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
78 memcpy(data->data, init[0], 32);
79 memcpy(data->data + 32, init[1], 32);
80}
81
82void bench_scalar_add(void* arg, int iters) {
83 int i, j = 0;
84 bench_inv *data = (bench_inv*)arg;
85
86 for (i = 0; i < iters; i++) {
87 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
88 }
89 CHECK(j <= iters);
90}
91
92void bench_scalar_negate(void* arg, int iters) {
93 int i;
94 bench_inv *data = (bench_inv*)arg;
95
96 for (i = 0; i < iters; i++) {
97 secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
98 }
99}
100
101void bench_scalar_mul(void* arg, int iters) {
102 int i;
103 bench_inv *data = (bench_inv*)arg;
104
105 for (i = 0; i < iters; i++) {
106 secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
107 }
108}
109
110void bench_scalar_split(void* arg, int iters) {
111 int i, j = 0;
112 bench_inv *data = (bench_inv*)arg;
113
114 for (i = 0; i < iters; i++) {
115 secp256k1_scalar_split_lambda(&data->scalar[0], &data->scalar[1], &data->scalar[0]);
116 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
117 }
118 CHECK(j <= iters);
119}
120
122 int i, j = 0;
123 bench_inv *data = (bench_inv*)arg;
124
125 for (i = 0; i < iters; i++) {
126 secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
127 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
128 }
129 CHECK(j <= iters);
130}
131
133 int i, j = 0;
134 bench_inv *data = (bench_inv*)arg;
135
136 for (i = 0; i < iters; i++) {
137 secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
138 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
139 }
140 CHECK(j <= iters);
141}
142
144 int i;
145 bench_inv *data = (bench_inv*)arg;
146
147 for (i = 0; i < iters; i++) {
148 secp256k1_fe_normalize(&data->fe[0]);
149 }
150}
151
153 int i;
154 bench_inv *data = (bench_inv*)arg;
155
156 for (i = 0; i < iters; i++) {
158 }
159}
160
161void bench_field_mul(void* arg, int iters) {
162 int i;
163 bench_inv *data = (bench_inv*)arg;
164
165 for (i = 0; i < iters; i++) {
166 secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
167 }
168}
169
170void bench_field_sqr(void* arg, int iters) {
171 int i;
172 bench_inv *data = (bench_inv*)arg;
173
174 for (i = 0; i < iters; i++) {
175 secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
176 }
177}
178
179void bench_field_inverse(void* arg, int iters) {
180 int i;
181 bench_inv *data = (bench_inv*)arg;
182
183 for (i = 0; i < iters; i++) {
184 secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
185 secp256k1_fe_add(&data->fe[0], &data->fe[1]);
186 }
187}
188
190 int i;
191 bench_inv *data = (bench_inv*)arg;
192
193 for (i = 0; i < iters; i++) {
194 secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
195 secp256k1_fe_add(&data->fe[0], &data->fe[1]);
196 }
197}
198
199void bench_field_sqrt(void* arg, int iters) {
200 int i, j = 0;
201 bench_inv *data = (bench_inv*)arg;
203
204 for (i = 0; i < iters; i++) {
205 t = data->fe[0];
206 j += secp256k1_fe_sqrt(&data->fe[0], &t);
207 secp256k1_fe_add(&data->fe[0], &data->fe[1]);
208 }
209 CHECK(j <= iters);
210}
211
213 int i;
214 bench_inv *data = (bench_inv*)arg;
215
216 for (i = 0; i < iters; i++) {
217 secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
218 }
219}
220
221void bench_group_add_var(void* arg, int iters) {
222 int i;
223 bench_inv *data = (bench_inv*)arg;
224
225 for (i = 0; i < iters; i++) {
226 secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
227 }
228}
229
231 int i;
232 bench_inv *data = (bench_inv*)arg;
233
234 for (i = 0; i < iters; i++) {
235 secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
236 }
237}
238
240 int i;
241 bench_inv *data = (bench_inv*)arg;
242
243 for (i = 0; i < iters; i++) {
244 secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
245 }
246}
247
249 int i, j = 0;
250 bench_inv *data = (bench_inv*)arg;
251
252 for (i = 0; i < iters; i++) {
253 j += secp256k1_gej_has_quad_y_var(&data->gej[0]);
254 /* Vary the Y and Z coordinates of the input (the X coordinate doesn't matter to
255 secp256k1_gej_has_quad_y_var). Note that the resulting coordinates will
256 generally not correspond to a point on the curve, but this is not a problem
257 for the code being benchmarked here. Adding and normalizing have less
258 overhead than EC operations (which could guarantee the point remains on the
259 curve). */
260 secp256k1_fe_add(&data->gej[0].y, &data->fe[1]);
261 secp256k1_fe_add(&data->gej[0].z, &data->fe[2]);
264 }
265 CHECK(j <= iters);
266}
267
269 int i;
270 bench_inv *data = (bench_inv*)arg;
271
272 for (i = 0; i < iters; ++i) {
273 secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
274 /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
275 Similar to bench_group_jacobi_var, this approach does not result in
276 coordinates of points on the curve. */
277 secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
278 secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
279 secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
283 }
284}
285
286void bench_ecmult_wnaf(void* arg, int iters) {
287 int i, bits = 0, overflow = 0;
288 bench_inv *data = (bench_inv*)arg;
289
290 for (i = 0; i < iters; i++) {
291 bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
292 overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
293 }
294 CHECK(overflow >= 0);
295 CHECK(bits <= 256*iters);
296}
297
298void bench_wnaf_const(void* arg, int iters) {
299 int i, bits = 0, overflow = 0;
300 bench_inv *data = (bench_inv*)arg;
301
302 for (i = 0; i < iters; i++) {
303 bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256);
304 overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
305 }
306 CHECK(overflow >= 0);
307 CHECK(bits <= 256*iters);
308}
309
310
311void bench_sha256(void* arg, int iters) {
312 int i;
313 bench_inv *data = (bench_inv*)arg;
315
316 for (i = 0; i < iters; i++) {
318 secp256k1_sha256_write(&sha, data->data, 32);
319 secp256k1_sha256_finalize(&sha, data->data);
320 }
321}
322
323void bench_hmac_sha256(void* arg, int iters) {
324 int i;
325 bench_inv *data = (bench_inv*)arg;
327
328 for (i = 0; i < iters; i++) {
332 }
333}
334
336 int i;
337 bench_inv *data = (bench_inv*)arg;
339
340 for (i = 0; i < iters; i++) {
343 }
344}
345
347 int i;
348 (void)arg;
349 for (i = 0; i < iters; i++) {
351 }
352}
353
354void bench_context_sign(void* arg, int iters) {
355 int i;
356 (void)arg;
357 for (i = 0; i < iters; i++) {
359 }
360}
361
362int main(int argc, char **argv) {
363 bench_inv data;
364 int iters = get_iters(20000);
365
366 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
367 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
368 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
369 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
370 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
371 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);
372
373 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
374 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
375 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
376 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
377 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
378 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
379 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
380
381 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
382 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
383 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
384 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
385 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, iters);
386 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
387
388 if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
389 if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
390
391 if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
392 if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
393 if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);
394
395 if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 1 + iters/1000);
396 if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 1 + iters/100);
397
398 return 0;
399}
static void run_benchmark(char *name, void(*benchmark)(void *), void(*setup)(void *), void(*teardown)(void *), void *data, int count, int iter)
Definition bench.c:26
int main(void)
Definition bench.c:157
void bench_field_inverse(void *arg, int iters)
void bench_scalar_negate(void *arg, int iters)
void bench_scalar_inverse_var(void *arg, int iters)
void bench_field_normalize(void *arg, int iters)
void bench_sha256(void *arg, int iters)
void bench_hmac_sha256(void *arg, int iters)
void bench_scalar_split(void *arg, int iters)
void bench_field_normalize_weak(void *arg, int iters)
void bench_field_sqrt(void *arg, int iters)
void bench_context_verify(void *arg, int iters)
void bench_wnaf_const(void *arg, int iters)
void bench_ecmult_wnaf(void *arg, int iters)
void bench_scalar_inverse(void *arg, int iters)
void bench_group_double_var(void *arg, int iters)
void bench_context_sign(void *arg, int iters)
void bench_group_jacobi_var(void *arg, int iters)
void bench_field_inverse_var(void *arg, int iters)
void bench_scalar_add(void *arg, int iters)
void bench_scalar_mul(void *arg, int iters)
void bench_group_add_affine_var(void *arg, int iters)
void bench_field_mul(void *arg, int iters)
void bench_group_to_affine_var(void *arg, int iters)
void bench_rfc6979_hmac_sha256(void *arg, int iters)
void bench_group_add_var(void *arg, int iters)
void bench_field_sqr(void *arg, int iters)
void bench_setup(void *arg)
void bench_group_add_affine(void *arg, int iters)
static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w, int size)
Convert a number to WNAF notation.
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w)
Convert a number to WNAF notation.
#define WINDOW_A
Definition ecmult_impl.h:34
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a)
Potentially faster version of secp256k1_fe_inv, without constant-time guarantee.
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize.
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a)
If a has a square root, it is computed in r and 1 is returned.
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
Normalize a field element, without constant-time guarantee.
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the (modular) inverse of another.
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
Sets a field element to be the product of two others.
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
Set a field element equal to 32-byte big endian value.
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the square of another.
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a)
Adds a field element to another.
static void secp256k1_fe_normalize(secp256k1_fe *r)
Field element module.
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd)
Set a group element (affine) equal to the point with the given X coordinate, and given oddness for Y.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity).
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a)
Check whether a group element's y coordinate is a quadratic residue.
T GetRand(T nMax=std::numeric_limits< T >::max()) noexcept
Generate a uniform random integer of type T in the range [0..nMax) nMax defaults to std::numeric_limi...
Definition random.h:85
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order), without constant-time guarantee.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order).
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
Find r1 and r2 such that r1+r2*lambda = k, where r1 and r2 or their negations are maximum 128 bits lo...
int have_flag(int argc, char **argv, char *flag)
Definition bench.h:109
int get_iters(int default_iters)
Definition bench.h:124
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen)
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32)
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen)
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
#define CHECK(cond)
Definition util.h:53
#define SECP256K1_CONTEXT_SIGN
Definition secp256k1.h:174
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition secp256k1.c:152
#define SECP256K1_CONTEXT_VERIFY
Flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and secp256k1_context...
Definition secp256k1.h:173
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition secp256k1.c:196
secp256k1_ge ge[2]
secp256k1_gej gej[2]
int wnaf[256]
secp256k1_scalar scalar[2]
unsigned char data[64]
secp256k1_fe fe[4]
A group element of the secp256k1 curve, in affine coordinates.
Definition group.h:13
secp256k1_fe x
Definition group.h:14
secp256k1_fe y
Definition group.h:15
A group element of the secp256k1 curve, in jacobian coordinates.
Definition group.h:23
secp256k1_fe y
Definition group.h:25
secp256k1_fe x
Definition group.h:24
secp256k1_fe z
Definition group.h:26
A scalar modulo the group order of the secp256k1 curve.
Definition scalar_4x64.h:13