7#ifndef SECP256K1_MODULE_SCHNORRSIG_MAIN_H
8#define SECP256K1_MODULE_SCHNORRSIG_MAIN_H
18 sha->
s[0] = 0x46615b35ul;
19 sha->
s[1] = 0xf4bfbff7ul;
20 sha->
s[2] = 0x9f8dc671ul;
21 sha->
s[3] = 0x83627ab3ul;
22 sha->
s[4] = 0x60217180ul;
23 sha->
s[5] = 0x57358661ul;
24 sha->
s[6] = 0x21a29e54ul;
25 sha->
s[7] = 0x68b07b4cul;
34 sha->
s[0] = 0x24dd3219ul;
35 sha->
s[1] = 0x4eba7e70ul;
36 sha->
s[2] = 0xca0fabb9ul;
37 sha->
s[3] = 0x0fa3166dul;
38 sha->
s[4] = 0x3afbe4b1ul;
39 sha->
s[5] = 0x4c44df97ul;
40 sha->
s[6] = 0x4aac2739ul;
41 sha->
s[7] = 0x249e850aul;
65 for (i = 0; i < 32; i++) {
98 sha->
s[0] = 0x9cecba11ul;
99 sha->
s[1] = 0x23925381ul;
100 sha->
s[2] = 0x11679112ul;
101 sha->
s[3] = 0xd1627e0ful;
102 sha->
s[4] = 0x97c87550ul;
103 sha->
s[5] = 0x003cc765ul;
104 sha->
s[6] = 0x90f61164ul;
105 sha->
s[7] = 0x33e9b66aul;
111 unsigned char buf[32];
132 unsigned char buf[32] = { 0 };
143 if (noncefp ==
NULL) {
215 unsigned char buf[32];
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx)
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *a)
Multiply with the generator: R = a*G.
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context *ctx)
static int secp256k1_keypair_load(const secp256k1_context *ctx, secp256k1_scalar *sk, secp256k1_ge *pk, const secp256k1_keypair *keypair)
static SECP256K1_INLINE int secp256k1_xonly_pubkey_load(const secp256k1_context *ctx, secp256k1_ge *ge, const secp256k1_xonly_pubkey *pubkey)
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b)
Same as secp256k1_fe_equal, but may be variable time.
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
Normalize a field element, without constant-time guarantee.
static int secp256k1_fe_is_odd(const secp256k1_fe *a)
Check the "oddness" of a field element.
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
Set a field element equal to 32-byte big endian value.
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a)
Convert a field element to a 32-byte big endian value.
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static void secp256k1_sha256_initialize_tagged(secp256k1_sha256 *hash, const unsigned char *tag, size_t taglen)
T GetRand(T nMax=std::numeric_limits< T >::max()) noexcept
Generate a uniform random integer of type T in the range [0..nMax) nMax defaults to std::numeric_limi...
static void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag)
If flag is true, set *r equal to *a; otherwise leave it.
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
Check whether a scalar equals zero.
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static void secp256k1_scalar_clear(secp256k1_scalar *r)
Clear a scalar to prevent the leak of sensitive data.
static const secp256k1_scalar secp256k1_scalar_one
static void secp256k1_schnorrsig_challenge(secp256k1_scalar *e, const unsigned char *r32, const unsigned char *msg, size_t msglen, const unsigned char *pubkey32)
static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data)
static const unsigned char schnorrsig_extraparams_magic[4]
static void secp256k1_nonce_function_bip340_sha256_tagged_aux(secp256k1_sha256 *sha)
static void secp256k1_nonce_function_bip340_sha256_tagged(secp256k1_sha256 *sha)
static void secp256k1_schnorrsig_sha256_tagged(secp256k1_sha256 *sha)
int secp256k1_schnorrsig_sign_custom(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_schnorrsig_extraparams *extraparams)
Create a Schnorr signature with a more flexible API.
int secp256k1_schnorrsig_sign_internal(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata)
int secp256k1_schnorrsig_sign(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, unsigned char *aux_rand32)
Create a Schnorr signature.
static const unsigned char bip340_algo[13]
const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340
An implementation of the nonce generation function as defined in Bitcoin Improvement Proposal 340 "Sc...
int secp256k1_schnorrsig_verify(const secp256k1_context *ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey)
Verify a Schnorr signature.
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
static SECP256K1_INLINE int secp256k1_memcmp_var(const void *s1, const void *s2, size_t n)
Semantics like memcmp.
#define VERIFY_CHECK(cond)
static SECP256K1_INLINE void secp256k1_memczero(void *s, size_t len, int flag)
static SECP256K1_INLINE void secp256k1_declassify(const secp256k1_context *ctx, const void *p, size_t len)
#define SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC
int(* secp256k1_nonce_function_hardened)(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data)
This module implements a variant of Schnorr signatures compliant with Bitcoin Improvement Proposal 34...
secp256k1_ecmult_gen_context ecmult_gen_ctx
secp256k1_ecmult_context ecmult_ctx
A group element of the secp256k1 curve, in affine coordinates.
A group element of the secp256k1 curve, in jacobian coordinates.
Opaque data structure that holds a keypair consisting of a secret and a public key.
A scalar modulo the group order of the secp256k1 curve.
Opaque data structure that holds a parsed and valid "x-only" public key.