Bitcoin ABC 0.26.3
P2P Digital Currency
Loading...
Searching...
No Matches
lockedpool.cpp
Go to the documentation of this file.
1// Copyright (c) 2016 The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#include <support/cleanse.h>
7
8#if defined(HAVE_CONFIG_H)
9#include <config/bitcoin-config.h>
10#endif
11
12#ifdef WIN32
13#ifndef NOMINMAX
14#define NOMINMAX
15#endif
16#include <windows.h>
17#else
18#include <climits> // for PAGESIZE
19#include <sys/mman.h> // for mmap
20#include <sys/resource.h> // for getrlimit
21#include <unistd.h> // for sysconf
22#endif
23
24#include <algorithm>
25#include <limits>
26#include <stdexcept>
27#include <utility>
28#ifdef ARENA_DEBUG
29#include <iomanip>
30#include <iostream>
31#endif
32
34
35/*******************************************************************************/
36// Utilities
37//
39static inline size_t align_up(size_t x, size_t align) {
40 return (x + align - 1) & ~(align - 1);
41}
42
43/*******************************************************************************/
44// Implementation: Arena
45
47 : base(static_cast<char *>(base_in)),
48 end(static_cast<char *>(base_in) + size_in), alignment(alignment_in) {
49 // Start with one free chunk that covers the entire arena
50 auto it = size_to_free_chunk.emplace(size_in, base);
51 chunks_free.emplace(base, it);
52 chunks_free_end.emplace(base + size_in, it);
53}
54
56
57void *Arena::alloc(size_t size) {
58 // Round to next multiple of alignment
59 size = align_up(size, alignment);
60
61 // Don't handle zero-sized chunks
62 if (size == 0) {
63 return nullptr;
64 }
65
66 // Pick a large enough free-chunk. Returns an iterator pointing to the first
67 // element that is not less than key. This allocation strategy is best-fit.
68 // According to "Dynamic Storage Allocation: A Survey and Critical Review",
69 // Wilson et. al. 1995,
70 // http://www.scs.stanford.edu/14wi-cs140/sched/readings/wilson.pdf,
71 // best-fit and first-fit policies seem to work well in practice.
72 auto size_ptr_it = size_to_free_chunk.lower_bound(size);
73 if (size_ptr_it == size_to_free_chunk.end()) {
74 return nullptr;
75 }
76
77 // Create the used-chunk, taking its space from the end of the free-chunk
78 const size_t size_remaining = size_ptr_it->first - size;
79 auto alloced =
80 chunks_used.emplace(size_ptr_it->second + size_remaining, size).first;
81 chunks_free_end.erase(size_ptr_it->second + size_ptr_it->first);
82 if (size_ptr_it->first == size) {
83 // whole chunk is used up
84 chunks_free.erase(size_ptr_it->second);
85 } else {
86 // still some memory left in the chunk
87 auto it_remaining =
92 }
94
95 return reinterpret_cast<void *>(alloced->first);
96}
97
98void Arena::free(void *ptr) {
99 // Freeing the nullptr pointer is OK.
100 if (ptr == nullptr) {
101 return;
102 }
103
104 // Remove chunk from used map
105 auto i = chunks_used.find(static_cast<char *>(ptr));
106 if (i == chunks_used.end()) {
107 throw std::runtime_error("Arena: invalid or double free");
108 }
109 std::pair<char *, size_t> freed = *i;
110 chunks_used.erase(i);
111
112 // coalesce freed with previous chunk
113 auto prev = chunks_free_end.find(freed.first);
114 if (prev != chunks_free_end.end()) {
115 freed.first -= prev->second->first;
116 freed.second += prev->second->first;
117 size_to_free_chunk.erase(prev->second);
118 chunks_free_end.erase(prev);
119 }
120
121 // coalesce freed with chunk after freed
122 auto next = chunks_free.find(freed.first + freed.second);
123 if (next != chunks_free.end()) {
124 freed.second += next->second->first;
125 size_to_free_chunk.erase(next->second);
126 chunks_free.erase(next);
127 }
128
129 // Add/set space with coalesced free chunk
130 auto it = size_to_free_chunk.emplace(freed.second, freed.first);
131 chunks_free[freed.first] = it;
132 chunks_free_end[freed.first + freed.second] = it;
133}
134
136 Arena::Stats r{0, 0, 0, chunks_used.size(), chunks_free.size()};
137 for (const auto &chunk : chunks_used) {
138 r.used += chunk.second;
139 }
140 for (const auto &chunk : chunks_free) {
141 r.free += chunk.second->first;
142 }
143 r.total = r.used + r.free;
144 return r;
145}
146
147#ifdef ARENA_DEBUG
148static void printchunk(void *base, size_t sz, bool used) {
149 std::cout << "0x" << std::hex << std::setw(16) << std::setfill('0') << base
150 << " 0x" << std::hex << std::setw(16) << std::setfill('0') << sz
151 << " 0x" << used << std::endl;
152}
153void Arena::walk() const {
154 for (const auto &chunk : chunks_used) {
155 printchunk(chunk.first, chunk.second, true);
156 }
157 std::cout << std::endl;
158 for (const auto &chunk : chunks_free) {
159 printchunk(chunk.first, chunk.second->first, false);
160 }
161 std::cout << std::endl;
162}
163#endif
164
165/*******************************************************************************/
166// Implementation: Win32LockedPageAllocator
167
168#ifdef WIN32
173public:
175 void *AllocateLocked(size_t len, bool *lockingSuccess) override;
176 void FreeLocked(void *addr, size_t len) override;
177 size_t GetLimit() override;
178
179private:
180 size_t page_size;
181};
182
183Win32LockedPageAllocator::Win32LockedPageAllocator() {
184 // Determine system page size in bytes
187 page_size = sSysInfo.dwPageSize;
188}
189void *Win32LockedPageAllocator::AllocateLocked(size_t len,
190 bool *lockingSuccess) {
191 len = align_up(len, page_size);
192 void *addr =
194 if (addr) {
195 // VirtualLock is used to attempt to keep keying material out of swap.
196 // Note that it does not provide this as a guarantee, but, in practice,
197 // memory that has been VirtualLock'd almost never gets written to the
198 // pagefile except in rare circumstances where memory is extremely low.
199 *lockingSuccess = VirtualLock(const_cast<void *>(addr), len) != 0;
200 }
201 return addr;
202}
203void Win32LockedPageAllocator::FreeLocked(void *addr, size_t len) {
204 len = align_up(len, page_size);
205 memory_cleanse(addr, len);
206 VirtualUnlock(const_cast<void *>(addr), len);
207}
208
209size_t Win32LockedPageAllocator::GetLimit() {
210 // TODO is there a limit on Windows, how to get it?
211 return std::numeric_limits<size_t>::max();
212}
213#endif
214
215/*******************************************************************************/
216// Implementation: PosixLockedPageAllocator
217
218#ifndef WIN32
224public:
226 void *AllocateLocked(size_t len, bool *lockingSuccess) override;
227 void FreeLocked(void *addr, size_t len) override;
228 size_t GetLimit() override;
229
230private:
231 size_t page_size;
232};
233
235// Determine system page size in bytes
236#if defined(PAGESIZE) // defined in climits
238#else // assume some POSIX OS
240#endif
241}
242
243// Some systems (at least OS X) do not define MAP_ANONYMOUS yet and define
244// MAP_ANON which is deprecated
245#ifndef MAP_ANONYMOUS
246#define MAP_ANONYMOUS MAP_ANON
247#endif
248
250 bool *lockingSuccess) {
251 void *addr;
253 addr = mmap(nullptr, len, PROT_READ | PROT_WRITE,
254 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
255 if (addr == MAP_FAILED) {
256 return nullptr;
257 }
258 if (addr) {
259 *lockingSuccess = mlock(addr, len) == 0;
260#if defined(MADV_DONTDUMP) // Linux
261 madvise(addr, len, MADV_DONTDUMP);
262#elif defined(MADV_NOCORE) // FreeBSD
263 madvise(addr, len, MADV_NOCORE);
264#endif
265 }
266 return addr;
267}
270 memory_cleanse(addr, len);
271 munlock(addr, len);
272 munmap(addr, len);
273}
275#ifdef RLIMIT_MEMLOCK
276 struct rlimit rlim;
277 if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
278 if (rlim.rlim_cur != RLIM_INFINITY) {
279 return rlim.rlim_cur;
280 }
281 }
282#endif
283 return std::numeric_limits<size_t>::max();
284}
285#endif
286
287/*******************************************************************************/
288// Implementation: LockedPool
289
290LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in,
291 LockingFailed_Callback lf_cb_in)
292 : allocator(std::move(allocator_in)), lf_cb(lf_cb_in),
293 cumulative_bytes_locked(0) {}
294
296void *LockedPool::alloc(size_t size) {
297 std::lock_guard<std::mutex> lock(mutex);
298
299 // Don't handle impossible sizes
300 if (size == 0 || size > ARENA_SIZE) {
301 return nullptr;
302 }
303
304 // Try allocating from each current arena
305 for (auto &arena : arenas) {
306 void *addr = arena.alloc(size);
307 if (addr) {
308 return addr;
309 }
310 }
311 // If that fails, create a new one
313 return arenas.back().alloc(size);
314 }
315 return nullptr;
316}
317
318void LockedPool::free(void *ptr) {
319 std::lock_guard<std::mutex> lock(mutex);
320 // TODO we can do better than this linear search by keeping a map of arena
321 // extents to arena, and looking up the address.
322 for (auto &arena : arenas) {
323 if (arena.addressInArena(ptr)) {
324 arena.free(ptr);
325 return;
326 }
327 }
328 throw std::runtime_error(
329 "LockedPool: invalid address not pointing to any arena");
330}
331
333 std::lock_guard<std::mutex> lock(mutex);
335 for (const auto &arena : arenas) {
336 Arena::Stats i = arena.stats();
337 r.used += i.used;
338 r.free += i.free;
339 r.total += i.total;
340 r.chunks_used += i.chunks_used;
341 r.chunks_free += i.chunks_free;
342 }
343 return r;
344}
345
346bool LockedPool::new_arena(size_t size, size_t align) {
347 bool locked;
348 // If this is the first arena, handle this specially: Cap the upper size by
349 // the process limit. This makes sure that the first arena will at least be
350 // locked. An exception to this is if the process limit is 0: in this case
351 // no memory can be locked at all so we'll skip past this logic.
352 if (arenas.empty()) {
353 size_t limit = allocator->GetLimit();
354 if (limit > 0) {
355 size = std::min(size, limit);
356 }
357 }
358 void *addr = allocator->AllocateLocked(size, &locked);
359 if (!addr) {
360 return false;
361 }
362 if (locked) {
364 } else if (lf_cb) {
365 // Call the locking-failed callback if locking failed
366 if (!lf_cb()) {
367 // If the callback returns false, free the memory and fail,
368 // otherwise consider the user warned and proceed.
369 allocator->FreeLocked(addr, size);
370 return false;
371 }
372 }
373 arenas.emplace_back(allocator.get(), addr, size, align);
374 return true;
375}
376
383 allocator->FreeLocked(base, size);
384}
385
386/*******************************************************************************/
387// Implementation: LockedPoolManager
388//
390 std::unique_ptr<LockedPageAllocator> allocator_in)
391 : LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed) {}
392
394 // TODO: log something but how? without including util.h
395 return true;
396}
397
399// Using a local static instance guarantees that the object is initialized when
400// it's first needed and also deinitialized after all objects that use it are
401// done with it. I can think of one unlikely scenario where we may have a static
402// deinitialization order/problem, but the check in LockedPoolManagerBase's
403// destructor helps us detect if that ever happens.
404#ifdef WIN32
405 std::unique_ptr<LockedPageAllocator> allocator(
407#else
408 std::unique_ptr<LockedPageAllocator> allocator(
410#endif
411 static LockedPoolManager instance(std::move(allocator));
413}
An arena manages a contiguous region of memory by dividing it into chunks.
Definition lockedpool.h:50
char * base
Base address of arena.
Definition lockedpool.h:111
size_t alignment
Minimum chunk alignment.
Definition lockedpool.h:115
ChunkToSizeMap chunks_free_end
Map from end of free chunk to its node in size_to_free_chunk.
Definition lockedpool.h:105
void * alloc(size_t size)
Allocate size bytes from this arena.
SizeToChunkSortedMap size_to_free_chunk
Map to enable O(log(n)) best-fit allocation, as it's sorted by size.
Definition lockedpool.h:98
Arena(void *base, size_t size, size_t alignment)
Stats stats() const
Get arena usage statistics.
std::unordered_map< char *, size_t > chunks_used
Map from begin of used chunk to its size.
Definition lockedpool.h:108
ChunkToSizeMap chunks_free
Map from begin of free chunk to its node in size_to_free_chunk.
Definition lockedpool.h:103
virtual ~Arena()
void free(void *ptr)
Free a previously allocated chunk of memory.
OS-dependent allocation and deallocation of locked/pinned memory pages.
Definition lockedpool.h:19
virtual void * AllocateLocked(size_t len, bool *lockingSuccess)=0
Allocate and lock memory pages.
virtual void FreeLocked(void *addr, size_t len)=0
Unlock and free memory pages.
virtual size_t GetLimit()=0
Get the total limit on the amount of memory that may be locked by this process, in bytes.
LockedPageArena(LockedPageAllocator *alloc_in, void *base_in, size_t size, size_t align)
Pool for locked memory chunks.
Definition lockedpool.h:132
void free(void *ptr)
Free a previously allocated chunk of memory.
Stats stats() const
Get pool usage statistics.
std::unique_ptr< LockedPageAllocator > allocator
Definition lockedpool.h:196
void * alloc(size_t size)
Allocate size bytes from this arena.
size_t cumulative_bytes_locked
Definition lockedpool.h:215
LockedPool(std::unique_ptr< LockedPageAllocator > allocator, LockingFailed_Callback lf_cb_in=nullptr)
Create a new LockedPool.
LockingFailed_Callback lf_cb
Definition lockedpool.h:214
std::list< LockedPageArena > arenas
Definition lockedpool.h:213
bool new_arena(size_t size, size_t align)
static const size_t ARENA_ALIGN
Chunk alignment.
Definition lockedpool.h:145
static const size_t ARENA_SIZE
Size of one arena of locked memory.
Definition lockedpool.h:140
std::mutex mutex
Mutex protects access to this pool's data structures, including arenas.
Definition lockedpool.h:219
Singleton class to keep track of locked (ie, non-swappable) memory, for use in std::allocator templat...
Definition lockedpool.h:233
LockedPoolManager(std::unique_ptr< LockedPageAllocator > allocator)
static bool LockingFailed()
Called when locking fails, warn the user here.
static LockedPoolManager * _instance
Definition lockedpool.h:250
static void CreateInstance()
Create a new LockedPoolManager specialized to the OS.
LockedPageAllocator specialized for OSes that don't try to be special snowflakes.
void * AllocateLocked(size_t len, bool *lockingSuccess) override
Allocate and lock memory pages.
void FreeLocked(void *addr, size_t len) override
Unlock and free memory pages.
size_t GetLimit() override
Get the total limit on the amount of memory that may be locked by this process, in bytes.
void memory_cleanse(void *ptr, size_t len)
Secure overwrite a buffer (possibly containing secret data) with zero-bytes.
Definition cleanse.cpp:14
Implement std::hash so RCUPtr can be used as a key for maps or sets.
Definition rcu.h:259
T GetRand(T nMax=std::numeric_limits< T >::max()) noexcept
Generate a uniform random integer of type T in the range [0..nMax) nMax defaults to std::numeric_limi...
Definition random.h:85
Memory statistics.
Definition lockedpool.h:59
size_t used
Definition lockedpool.h:60
size_t chunks_used
Definition lockedpool.h:63
size_t total
Definition lockedpool.h:62
size_t free
Definition lockedpool.h:61
size_t chunks_free
Definition lockedpool.h:64
Memory statistics.
Definition lockedpool.h:153
#define MAP_ANONYMOUS
static size_t align_up(size_t x, size_t align)
Align up to power of 2.