Bitcoin Core  24.99.0
P2P Digital Currency
bench_internal.c
Go to the documentation of this file.
1 /***********************************************************************
2  * Copyright (c) 2014-2015 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5  ***********************************************************************/
6 #include <stdio.h>
7 
8 #include "secp256k1.c"
9 #include "../include/secp256k1.h"
10 
11 #include "assumptions.h"
12 #include "util.h"
13 #include "hash_impl.h"
14 #include "field_impl.h"
15 #include "group_impl.h"
16 #include "scalar_impl.h"
17 #include "ecmult_const_impl.h"
18 #include "ecmult_impl.h"
19 #include "bench.h"
20 
21 typedef struct {
22  secp256k1_scalar scalar[2];
23  secp256k1_fe fe[4];
24  secp256k1_ge ge[2];
25  secp256k1_gej gej[2];
26  unsigned char data[64];
27  int wnaf[256];
28 } bench_inv;
29 
30 static void bench_setup(void* arg) {
31  bench_inv *data = (bench_inv*)arg;
32 
33  static const unsigned char init[4][32] = {
34  /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
35  and the (implied affine) X coordinate of gej[0]. */
36  {
37  0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
38  0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
39  0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
40  0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
41  },
42  /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
43  and the (implied affine) X coordinate of gej[1]. */
44  {
45  0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
46  0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
47  0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
48  0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
49  },
50  /* Initializer for fe[2] and the Z coordinate of gej[0]. */
51  {
52  0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
53  0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
54  0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
55  0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
56  },
57  /* Initializer for fe[3] and the Z coordinate of gej[1]. */
58  {
59  0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
60  0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
61  0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
62  0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
63  }
64  };
65 
66  secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
67  secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
68  secp256k1_fe_set_b32(&data->fe[0], init[0]);
69  secp256k1_fe_set_b32(&data->fe[1], init[1]);
70  secp256k1_fe_set_b32(&data->fe[2], init[2]);
71  secp256k1_fe_set_b32(&data->fe[3], init[3]);
72  CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
73  CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
74  secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
75  secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
76  secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
77  secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
78  memcpy(data->data, init[0], 32);
79  memcpy(data->data + 32, init[1], 32);
80 }
81 
82 static void bench_scalar_add(void* arg, int iters) {
83  int i, j = 0;
84  bench_inv *data = (bench_inv*)arg;
85 
86  for (i = 0; i < iters; i++) {
87  j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
88  }
89  CHECK(j <= iters);
90 }
91 
92 static void bench_scalar_negate(void* arg, int iters) {
93  int i;
94  bench_inv *data = (bench_inv*)arg;
95 
96  for (i = 0; i < iters; i++) {
97  secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
98  }
99 }
100 
101 static void bench_scalar_mul(void* arg, int iters) {
102  int i;
103  bench_inv *data = (bench_inv*)arg;
104 
105  for (i = 0; i < iters; i++) {
106  secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
107  }
108 }
109 
110 static void bench_scalar_split(void* arg, int iters) {
111  int i, j = 0;
112  bench_inv *data = (bench_inv*)arg;
113  secp256k1_scalar tmp;
114 
115  for (i = 0; i < iters; i++) {
116  secp256k1_scalar_split_lambda(&tmp, &data->scalar[1], &data->scalar[0]);
117  j += secp256k1_scalar_add(&data->scalar[0], &tmp, &data->scalar[1]);
118  }
119  CHECK(j <= iters);
120 }
121 
122 static void bench_scalar_inverse(void* arg, int iters) {
123  int i, j = 0;
124  bench_inv *data = (bench_inv*)arg;
125 
126  for (i = 0; i < iters; i++) {
127  secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
128  j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
129  }
130  CHECK(j <= iters);
131 }
132 
133 static void bench_scalar_inverse_var(void* arg, int iters) {
134  int i, j = 0;
135  bench_inv *data = (bench_inv*)arg;
136 
137  for (i = 0; i < iters; i++) {
138  secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
139  j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
140  }
141  CHECK(j <= iters);
142 }
143 
144 static void bench_field_half(void* arg, int iters) {
145  int i;
146  bench_inv *data = (bench_inv*)arg;
147 
148  for (i = 0; i < iters; i++) {
149  secp256k1_fe_half(&data->fe[0]);
150  }
151 }
152 
153 static void bench_field_normalize(void* arg, int iters) {
154  int i;
155  bench_inv *data = (bench_inv*)arg;
156 
157  for (i = 0; i < iters; i++) {
158  secp256k1_fe_normalize(&data->fe[0]);
159  }
160 }
161 
162 static void bench_field_normalize_weak(void* arg, int iters) {
163  int i;
164  bench_inv *data = (bench_inv*)arg;
165 
166  for (i = 0; i < iters; i++) {
167  secp256k1_fe_normalize_weak(&data->fe[0]);
168  }
169 }
170 
171 static void bench_field_mul(void* arg, int iters) {
172  int i;
173  bench_inv *data = (bench_inv*)arg;
174 
175  for (i = 0; i < iters; i++) {
176  secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
177  }
178 }
179 
180 static void bench_field_sqr(void* arg, int iters) {
181  int i;
182  bench_inv *data = (bench_inv*)arg;
183 
184  for (i = 0; i < iters; i++) {
185  secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
186  }
187 }
188 
189 static void bench_field_inverse(void* arg, int iters) {
190  int i;
191  bench_inv *data = (bench_inv*)arg;
192 
193  for (i = 0; i < iters; i++) {
194  secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
195  secp256k1_fe_add(&data->fe[0], &data->fe[1]);
196  }
197 }
198 
199 static void bench_field_inverse_var(void* arg, int iters) {
200  int i;
201  bench_inv *data = (bench_inv*)arg;
202 
203  for (i = 0; i < iters; i++) {
204  secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
205  secp256k1_fe_add(&data->fe[0], &data->fe[1]);
206  }
207 }
208 
209 static void bench_field_sqrt(void* arg, int iters) {
210  int i, j = 0;
211  bench_inv *data = (bench_inv*)arg;
212  secp256k1_fe t;
213 
214  for (i = 0; i < iters; i++) {
215  t = data->fe[0];
216  j += secp256k1_fe_sqrt(&data->fe[0], &t);
217  secp256k1_fe_add(&data->fe[0], &data->fe[1]);
218  }
219  CHECK(j <= iters);
220 }
221 
222 static void bench_field_is_square_var(void* arg, int iters) {
223  int i, j = 0;
224  bench_inv *data = (bench_inv*)arg;
225  secp256k1_fe t = data->fe[0];
226 
227  for (i = 0; i < iters; i++) {
229  secp256k1_fe_add(&t, &data->fe[1]);
231  }
232  CHECK(j <= iters);
233 }
234 
235 static void bench_group_double_var(void* arg, int iters) {
236  int i;
237  bench_inv *data = (bench_inv*)arg;
238 
239  for (i = 0; i < iters; i++) {
240  secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
241  }
242 }
243 
244 static void bench_group_add_var(void* arg, int iters) {
245  int i;
246  bench_inv *data = (bench_inv*)arg;
247 
248  for (i = 0; i < iters; i++) {
249  secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
250  }
251 }
252 
253 static void bench_group_add_affine(void* arg, int iters) {
254  int i;
255  bench_inv *data = (bench_inv*)arg;
256 
257  for (i = 0; i < iters; i++) {
258  secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
259  }
260 }
261 
262 static void bench_group_add_affine_var(void* arg, int iters) {
263  int i;
264  bench_inv *data = (bench_inv*)arg;
265 
266  for (i = 0; i < iters; i++) {
267  secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
268  }
269 }
270 
271 static void bench_group_add_zinv_var(void* arg, int iters) {
272  int i;
273  bench_inv *data = (bench_inv*)arg;
274 
275  for (i = 0; i < iters; i++) {
276  secp256k1_gej_add_zinv_var(&data->gej[0], &data->gej[0], &data->ge[1], &data->gej[0].y);
277  }
278 }
279 
280 static void bench_group_to_affine_var(void* arg, int iters) {
281  int i;
282  bench_inv *data = (bench_inv*)arg;
283 
284  for (i = 0; i < iters; ++i) {
285  secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
286  /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
287  Note that the resulting coordinates will generally not correspond to a point
288  on the curve, but this is not a problem for the code being benchmarked here.
289  Adding and normalizing have less overhead than EC operations (which could
290  guarantee the point remains on the curve). */
291  secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
292  secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
293  secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
294  secp256k1_fe_normalize_var(&data->gej[0].x);
295  secp256k1_fe_normalize_var(&data->gej[0].y);
296  secp256k1_fe_normalize_var(&data->gej[0].z);
297  }
298 }
299 
300 static void bench_ecmult_wnaf(void* arg, int iters) {
301  int i, bits = 0, overflow = 0;
302  bench_inv *data = (bench_inv*)arg;
303 
304  for (i = 0; i < iters; i++) {
305  bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
306  overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
307  }
308  CHECK(overflow >= 0);
309  CHECK(bits <= 256*iters);
310 }
311 
312 static void bench_wnaf_const(void* arg, int iters) {
313  int i, bits = 0, overflow = 0;
314  bench_inv *data = (bench_inv*)arg;
315 
316  for (i = 0; i < iters; i++) {
317  bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256);
318  overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
319  }
320  CHECK(overflow >= 0);
321  CHECK(bits <= 256*iters);
322 }
323 
324 static void bench_sha256(void* arg, int iters) {
325  int i;
326  bench_inv *data = (bench_inv*)arg;
327  secp256k1_sha256 sha;
328 
329  for (i = 0; i < iters; i++) {
331  secp256k1_sha256_write(&sha, data->data, 32);
332  secp256k1_sha256_finalize(&sha, data->data);
333  }
334 }
335 
336 static void bench_hmac_sha256(void* arg, int iters) {
337  int i;
338  bench_inv *data = (bench_inv*)arg;
340 
341  for (i = 0; i < iters; i++) {
342  secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
343  secp256k1_hmac_sha256_write(&hmac, data->data, 32);
344  secp256k1_hmac_sha256_finalize(&hmac, data->data);
345  }
346 }
347 
348 static void bench_rfc6979_hmac_sha256(void* arg, int iters) {
349  int i;
350  bench_inv *data = (bench_inv*)arg;
352 
353  for (i = 0; i < iters; i++) {
356  }
357 }
358 
359 static void bench_context(void* arg, int iters) {
360  int i;
361  (void)arg;
362  for (i = 0; i < iters; i++) {
364  }
365 }
366 
367 int main(int argc, char **argv) {
368  bench_inv data;
369  int iters = get_iters(20000);
370  int d = argc == 1; /* default */
372 
373  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
374  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
375  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
376  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
377  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
378  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);
379 
380  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "half")) run_benchmark("field_half", bench_field_half, bench_setup, NULL, &data, 10, iters*100);
381  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
382  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
383  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
384  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
385  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
386  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
387  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "issquare")) run_benchmark("field_is_square_var", bench_field_is_square_var, bench_setup, NULL, &data, 10, iters);
388  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
389 
390  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
391  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
392  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
393  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
394  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_zinv_var", bench_group_add_zinv_var, bench_setup, NULL, &data, 10, iters*10);
395  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
396 
397  if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
398  if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
399 
400  if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
401  if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
402  if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);
403 
404  if (d || have_flag(argc, argv, "context")) run_benchmark("context_create", bench_context, bench_setup, NULL, &data, 10, iters);
405 
406  return 0;
407 }
static void bench_setup(void *arg)
static void bench_scalar_inverse(void *arg, int iters)
static void bench_scalar_inverse_var(void *arg, int iters)
static void bench_field_mul(void *arg, int iters)
static void bench_sha256(void *arg, int iters)
static void bench_rfc6979_hmac_sha256(void *arg, int iters)
static void bench_scalar_negate(void *arg, int iters)
static void bench_scalar_split(void *arg, int iters)
static void bench_scalar_add(void *arg, int iters)
int main(int argc, char **argv)
static void bench_field_normalize(void *arg, int iters)
static void bench_ecmult_wnaf(void *arg, int iters)
static void bench_group_add_zinv_var(void *arg, int iters)
static void bench_group_double_var(void *arg, int iters)
static void bench_field_inverse(void *arg, int iters)
static void bench_group_to_affine_var(void *arg, int iters)
static void bench_field_sqr(void *arg, int iters)
static void bench_scalar_mul(void *arg, int iters)
static void bench_field_normalize_weak(void *arg, int iters)
static void bench_group_add_affine_var(void *arg, int iters)
static void bench_field_is_square_var(void *arg, int iters)
static void bench_group_add_affine(void *arg, int iters)
static void bench_context(void *arg, int iters)
static void bench_field_half(void *arg, int iters)
static void bench_wnaf_const(void *arg, int iters)
static void bench_group_add_var(void *arg, int iters)
static void bench_field_inverse_var(void *arg, int iters)
static void bench_hmac_sha256(void *arg, int iters)
static void bench_field_sqrt(void *arg, int iters)
static void run_benchmark(char *name, void(*benchmark)(void *), void(*setup)(void *), void(*teardown)(void *), void *data, int count, int iter)
Definition: bench.c:26
static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w, int size)
Convert a number to WNAF notation.
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w)
Convert a number to WNAF notation.
Definition: ecmult_impl.h:159
#define WINDOW_A
Definition: ecmult_impl.h:32
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a)
Potentially faster version of secp256k1_fe_inv, without constant-time guarantee.
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize.
static int secp256k1_fe_is_square_var(const secp256k1_fe *a)
Determine whether a is a square (modulo p).
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a)
If a has a square root, it is computed in r and 1 is returned.
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
Normalize a field element, without constant-time guarantee.
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the (modular) inverse of another.
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
Sets a field element to be the product of two others.
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
Set a field element equal to 32-byte big endian value.
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the square of another.
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a)
Adds a field element to another.
static void secp256k1_fe_normalize(secp256k1_fe *r)
Normalize a field element.
static void secp256k1_fe_half(secp256k1_fe *r)
Halves the value of a field element modulo the field prime.
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv).
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd)
Set a group element (affine) equal to the point with the given X coordinate, and given oddness for Y.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity).
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
#define CHECK(cond)
Unconditional failure on condition failure.
Definition: util.h:35
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order), without constant-time guarantee.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static void secp256k1_scalar_split_lambda(secp256k1_scalar *SECP256K1_RESTRICT r1, secp256k1_scalar *SECP256K1_RESTRICT r2, const secp256k1_scalar *SECP256K1_RESTRICT k)
Find r1 and r2 such that r1+r2*lambda = k, where r1 and r2 or their negations are maximum 128 bits lo...
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order).
static int get_iters(int default_iters)
Definition: bench.h:170
static void print_output_table_header_row(void)
Definition: bench.h:179
static int have_flag(int argc, char **argv, char *flag)
Definition: bench.h:132
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen)
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32)
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen)
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:186
#define SECP256K1_CONTEXT_NONE
Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size,...
Definition: secp256k1.h:210
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:140
secp256k1_ge ge[2]
secp256k1_gej gej[2]
int wnaf[256]
secp256k1_scalar scalar[2]
unsigned char data[64]
secp256k1_fe fe[4]
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
secp256k1_fe x
Definition: group.h:17
secp256k1_fe y
Definition: group.h:18
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
secp256k1_fe y
Definition: group.h:30
secp256k1_fe x
Definition: group.h:29
secp256k1_fe z
Definition: group.h:31
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13