Bitcoin Core  27.99.0
P2P Digital Currency
bench_internal.c
Go to the documentation of this file.
1 /***********************************************************************
2  * Copyright (c) 2014-2015 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5  ***********************************************************************/
6 #include <stdio.h>
7 
8 #include "secp256k1.c"
9 #include "../include/secp256k1.h"
10 
11 #include "assumptions.h"
12 #include "util.h"
13 #include "hash_impl.h"
14 #include "field_impl.h"
15 #include "group_impl.h"
16 #include "scalar_impl.h"
17 #include "ecmult_impl.h"
18 #include "bench.h"
19 
20 static void help(int default_iters) {
21  printf("Benchmarks various internal routines.\n");
22  printf("\n");
23  printf("The default number of iterations for each benchmark is %d. This can be\n", default_iters);
24  printf("customized using the SECP256K1_BENCH_ITERS environment variable.\n");
25  printf("\n");
26  printf("Usage: ./bench_internal [args]\n");
27  printf("By default, all benchmarks will be run.\n");
28  printf("args:\n");
29  printf(" help : display this help and exit\n");
30  printf(" scalar : all scalar operations (add, half, inverse, mul, negate, split)\n");
31  printf(" field : all field operations (half, inverse, issquare, mul, normalize, sqr, sqrt)\n");
32  printf(" group : all group operations (add, double, to_affine)\n");
33  printf(" ecmult : all point multiplication operations (ecmult_wnaf) \n");
34  printf(" hash : all hash algorithms (hmac, rng6979, sha256)\n");
35  printf(" context : all context object operations (context_create)\n");
36  printf("\n");
37 }
38 
39 typedef struct {
40  secp256k1_scalar scalar[2];
41  secp256k1_fe fe[4];
42  secp256k1_ge ge[2];
43  secp256k1_gej gej[2];
44  unsigned char data[64];
45  int wnaf[256];
46 } bench_inv;
47 
48 static void bench_setup(void* arg) {
49  bench_inv *data = (bench_inv*)arg;
50 
51  static const unsigned char init[4][32] = {
52  /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
53  and the (implied affine) X coordinate of gej[0]. */
54  {
55  0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
56  0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
57  0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
58  0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
59  },
60  /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
61  and the (implied affine) X coordinate of gej[1]. */
62  {
63  0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
64  0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
65  0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
66  0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
67  },
68  /* Initializer for fe[2] and the Z coordinate of gej[0]. */
69  {
70  0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
71  0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
72  0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
73  0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
74  },
75  /* Initializer for fe[3] and the Z coordinate of gej[1]. */
76  {
77  0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
78  0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
79  0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
80  0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
81  }
82  };
83 
84  secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
85  secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
86  secp256k1_fe_set_b32_limit(&data->fe[0], init[0]);
87  secp256k1_fe_set_b32_limit(&data->fe[1], init[1]);
88  secp256k1_fe_set_b32_limit(&data->fe[2], init[2]);
89  secp256k1_fe_set_b32_limit(&data->fe[3], init[3]);
90  CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
91  CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
92  secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
93  secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
94  secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
95  secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
96  memcpy(data->data, init[0], 32);
97  memcpy(data->data + 32, init[1], 32);
98 }
99 
100 static void bench_scalar_add(void* arg, int iters) {
101  int i, j = 0;
102  bench_inv *data = (bench_inv*)arg;
103 
104  for (i = 0; i < iters; i++) {
105  j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
106  }
107  CHECK(j <= iters);
108 }
109 
110 static void bench_scalar_negate(void* arg, int iters) {
111  int i;
112  bench_inv *data = (bench_inv*)arg;
113 
114  for (i = 0; i < iters; i++) {
115  secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
116  }
117 }
118 
119 static void bench_scalar_half(void* arg, int iters) {
120  int i;
121  bench_inv *data = (bench_inv*)arg;
122  secp256k1_scalar s = data->scalar[0];
123 
124  for (i = 0; i < iters; i++) {
125  secp256k1_scalar_half(&s, &s);
126  }
127 
128  data->scalar[0] = s;
129 }
130 
131 static void bench_scalar_mul(void* arg, int iters) {
132  int i;
133  bench_inv *data = (bench_inv*)arg;
134 
135  for (i = 0; i < iters; i++) {
136  secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
137  }
138 }
139 
140 static void bench_scalar_split(void* arg, int iters) {
141  int i, j = 0;
142  bench_inv *data = (bench_inv*)arg;
143  secp256k1_scalar tmp;
144 
145  for (i = 0; i < iters; i++) {
146  secp256k1_scalar_split_lambda(&tmp, &data->scalar[1], &data->scalar[0]);
147  j += secp256k1_scalar_add(&data->scalar[0], &tmp, &data->scalar[1]);
148  }
149  CHECK(j <= iters);
150 }
151 
152 static void bench_scalar_inverse(void* arg, int iters) {
153  int i, j = 0;
154  bench_inv *data = (bench_inv*)arg;
155 
156  for (i = 0; i < iters; i++) {
157  secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
158  j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
159  }
160  CHECK(j <= iters);
161 }
162 
163 static void bench_scalar_inverse_var(void* arg, int iters) {
164  int i, j = 0;
165  bench_inv *data = (bench_inv*)arg;
166 
167  for (i = 0; i < iters; i++) {
168  secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
169  j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
170  }
171  CHECK(j <= iters);
172 }
173 
174 static void bench_field_half(void* arg, int iters) {
175  int i;
176  bench_inv *data = (bench_inv*)arg;
177 
178  for (i = 0; i < iters; i++) {
179  secp256k1_fe_half(&data->fe[0]);
180  }
181 }
182 
183 static void bench_field_normalize(void* arg, int iters) {
184  int i;
185  bench_inv *data = (bench_inv*)arg;
186 
187  for (i = 0; i < iters; i++) {
188  secp256k1_fe_normalize(&data->fe[0]);
189  }
190 }
191 
192 static void bench_field_normalize_weak(void* arg, int iters) {
193  int i;
194  bench_inv *data = (bench_inv*)arg;
195 
196  for (i = 0; i < iters; i++) {
197  secp256k1_fe_normalize_weak(&data->fe[0]);
198  }
199 }
200 
201 static void bench_field_mul(void* arg, int iters) {
202  int i;
203  bench_inv *data = (bench_inv*)arg;
204 
205  for (i = 0; i < iters; i++) {
206  secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
207  }
208 }
209 
210 static void bench_field_sqr(void* arg, int iters) {
211  int i;
212  bench_inv *data = (bench_inv*)arg;
213 
214  for (i = 0; i < iters; i++) {
215  secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
216  }
217 }
218 
219 static void bench_field_inverse(void* arg, int iters) {
220  int i;
221  bench_inv *data = (bench_inv*)arg;
222 
223  for (i = 0; i < iters; i++) {
224  secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
225  secp256k1_fe_add(&data->fe[0], &data->fe[1]);
226  }
227 }
228 
229 static void bench_field_inverse_var(void* arg, int iters) {
230  int i;
231  bench_inv *data = (bench_inv*)arg;
232 
233  for (i = 0; i < iters; i++) {
234  secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
235  secp256k1_fe_add(&data->fe[0], &data->fe[1]);
236  }
237 }
238 
239 static void bench_field_sqrt(void* arg, int iters) {
240  int i, j = 0;
241  bench_inv *data = (bench_inv*)arg;
242  secp256k1_fe t;
243 
244  for (i = 0; i < iters; i++) {
245  t = data->fe[0];
246  j += secp256k1_fe_sqrt(&data->fe[0], &t);
247  secp256k1_fe_add(&data->fe[0], &data->fe[1]);
248  }
249  CHECK(j <= iters);
250 }
251 
252 static void bench_field_is_square_var(void* arg, int iters) {
253  int i, j = 0;
254  bench_inv *data = (bench_inv*)arg;
255  secp256k1_fe t = data->fe[0];
256 
257  for (i = 0; i < iters; i++) {
259  secp256k1_fe_add(&t, &data->fe[1]);
261  }
262  CHECK(j <= iters);
263 }
264 
265 static void bench_group_double_var(void* arg, int iters) {
266  int i;
267  bench_inv *data = (bench_inv*)arg;
268 
269  for (i = 0; i < iters; i++) {
270  secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
271  }
272 }
273 
274 static void bench_group_add_var(void* arg, int iters) {
275  int i;
276  bench_inv *data = (bench_inv*)arg;
277 
278  for (i = 0; i < iters; i++) {
279  secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
280  }
281 }
282 
283 static void bench_group_add_affine(void* arg, int iters) {
284  int i;
285  bench_inv *data = (bench_inv*)arg;
286 
287  for (i = 0; i < iters; i++) {
288  secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
289  }
290 }
291 
292 static void bench_group_add_affine_var(void* arg, int iters) {
293  int i;
294  bench_inv *data = (bench_inv*)arg;
295 
296  for (i = 0; i < iters; i++) {
297  secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
298  }
299 }
300 
301 static void bench_group_add_zinv_var(void* arg, int iters) {
302  int i;
303  bench_inv *data = (bench_inv*)arg;
304 
305  for (i = 0; i < iters; i++) {
306  secp256k1_gej_add_zinv_var(&data->gej[0], &data->gej[0], &data->ge[1], &data->gej[0].y);
307  }
308 }
309 
310 static void bench_group_to_affine_var(void* arg, int iters) {
311  int i;
312  bench_inv *data = (bench_inv*)arg;
313 
314  for (i = 0; i < iters; ++i) {
315  secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
316  /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
317  Note that the resulting coordinates will generally not correspond to a point
318  on the curve, but this is not a problem for the code being benchmarked here.
319  Adding and normalizing have less overhead than EC operations (which could
320  guarantee the point remains on the curve). */
321  secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
322  secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
323  secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
324  secp256k1_fe_normalize_var(&data->gej[0].x);
325  secp256k1_fe_normalize_var(&data->gej[0].y);
326  secp256k1_fe_normalize_var(&data->gej[0].z);
327  }
328 }
329 
330 static void bench_ecmult_wnaf(void* arg, int iters) {
331  int i, bits = 0, overflow = 0;
332  bench_inv *data = (bench_inv*)arg;
333 
334  for (i = 0; i < iters; i++) {
335  bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
336  overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
337  }
338  CHECK(overflow >= 0);
339  CHECK(bits <= 256*iters);
340 }
341 
342 static void bench_sha256(void* arg, int iters) {
343  int i;
344  bench_inv *data = (bench_inv*)arg;
345  secp256k1_sha256 sha;
346 
347  for (i = 0; i < iters; i++) {
349  secp256k1_sha256_write(&sha, data->data, 32);
350  secp256k1_sha256_finalize(&sha, data->data);
351  }
352 }
353 
354 static void bench_hmac_sha256(void* arg, int iters) {
355  int i;
356  bench_inv *data = (bench_inv*)arg;
358 
359  for (i = 0; i < iters; i++) {
360  secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
361  secp256k1_hmac_sha256_write(&hmac, data->data, 32);
362  secp256k1_hmac_sha256_finalize(&hmac, data->data);
363  }
364 }
365 
366 static void bench_rfc6979_hmac_sha256(void* arg, int iters) {
367  int i;
368  bench_inv *data = (bench_inv*)arg;
370 
371  for (i = 0; i < iters; i++) {
374  }
375 }
376 
377 static void bench_context(void* arg, int iters) {
378  int i;
379  (void)arg;
380  for (i = 0; i < iters; i++) {
382  }
383 }
384 
385 int main(int argc, char **argv) {
386  bench_inv data;
387  int default_iters = 20000;
388  int iters = get_iters(default_iters);
389  int d = argc == 1; /* default */
390 
391  if (argc > 1) {
392  if (have_flag(argc, argv, "-h")
393  || have_flag(argc, argv, "--help")
394  || have_flag(argc, argv, "help")) {
395  help(default_iters);
396  return 0;
397  }
398  }
399 
401 
402  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "half")) run_benchmark("scalar_half", bench_scalar_half, bench_setup, NULL, &data, 10, iters*100);
403  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
404  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
405  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
406  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
407  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
408  if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);
409 
410  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "half")) run_benchmark("field_half", bench_field_half, bench_setup, NULL, &data, 10, iters*100);
411  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
412  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
413  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
414  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
415  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
416  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
417  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "issquare")) run_benchmark("field_is_square_var", bench_field_is_square_var, bench_setup, NULL, &data, 10, iters);
418  if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
419 
420  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
421  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
422  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
423  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
424  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_zinv_var", bench_group_add_zinv_var, bench_setup, NULL, &data, 10, iters*10);
425  if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
426 
427  if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
428 
429  if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
430  if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
431  if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);
432 
433  if (d || have_flag(argc, argv, "context")) run_benchmark("context_create", bench_context, bench_setup, NULL, &data, 10, iters);
434 
435  return 0;
436 }
static void bench_setup(void *arg)
static void bench_scalar_inverse(void *arg, int iters)
static void bench_scalar_inverse_var(void *arg, int iters)
static void bench_field_mul(void *arg, int iters)
static void bench_sha256(void *arg, int iters)
static void bench_rfc6979_hmac_sha256(void *arg, int iters)
static void bench_scalar_negate(void *arg, int iters)
static void bench_scalar_split(void *arg, int iters)
static void bench_scalar_add(void *arg, int iters)
int main(int argc, char **argv)
static void help(int default_iters)
static void bench_field_normalize(void *arg, int iters)
static void bench_ecmult_wnaf(void *arg, int iters)
static void bench_group_add_zinv_var(void *arg, int iters)
static void bench_group_double_var(void *arg, int iters)
static void bench_field_inverse(void *arg, int iters)
static void bench_group_to_affine_var(void *arg, int iters)
static void bench_field_sqr(void *arg, int iters)
static void bench_scalar_mul(void *arg, int iters)
static void bench_field_normalize_weak(void *arg, int iters)
static void bench_group_add_affine_var(void *arg, int iters)
static void bench_field_is_square_var(void *arg, int iters)
static void bench_group_add_affine(void *arg, int iters)
static void bench_context(void *arg, int iters)
static void bench_field_half(void *arg, int iters)
static void bench_group_add_var(void *arg, int iters)
static void bench_field_inverse_var(void *arg, int iters)
static void bench_hmac_sha256(void *arg, int iters)
static void bench_field_sqrt(void *arg, int iters)
static void bench_scalar_half(void *arg, int iters)
static void run_benchmark(char *name, void(*benchmark)(void *), void(*setup)(void *), void(*teardown)(void *), void *data, int count, int iter)
Definition: bench.c:26
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w)
Convert a number to WNAF notation.
Definition: ecmult_impl.h:162
#define WINDOW_A
Definition: ecmult_impl.h:32
#define secp256k1_fe_normalize_weak
Definition: field.h:79
#define secp256k1_fe_mul
Definition: field.h:94
static int secp256k1_fe_sqrt(secp256k1_fe *SECP256K1_RESTRICT r, const secp256k1_fe *SECP256K1_RESTRICT a)
Compute a square root of a field element.
#define secp256k1_fe_add
Definition: field.h:93
#define secp256k1_fe_normalize_var
Definition: field.h:80
#define secp256k1_fe_half
Definition: field.h:102
#define secp256k1_fe_inv_var
Definition: field.h:100
#define secp256k1_fe_set_b32_limit
Definition: field.h:89
#define secp256k1_fe_is_square_var
Definition: field.h:104
#define secp256k1_fe_inv
Definition: field.h:99
#define secp256k1_fe_sqr
Definition: field.h:95
#define secp256k1_fe_normalize
Definition: field.h:78
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv).
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd)
Set a group element (affine) equal to the point with the given X coordinate, and given oddness for Y.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity).
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
#define CHECK(cond)
Unconditional failure on condition failure.
Definition: util.h:35
void printf(const char *fmt, const Args &... args)
Format list of arguments to std::cout, according to the given format string.
Definition: tinyformat.h:1077
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a)
Multiply a scalar with the multiplicative inverse of 2.
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order), without constant-time guarantee.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static void secp256k1_scalar_split_lambda(secp256k1_scalar *SECP256K1_RESTRICT r1, secp256k1_scalar *SECP256K1_RESTRICT r2, const secp256k1_scalar *SECP256K1_RESTRICT k)
Find r1 and r2 such that r1+r2*lambda = k, where r1 and r2 or their negations are maximum 128 bits lo...
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order).
static int get_iters(int default_iters)
Definition: bench.h:170
static void print_output_table_header_row(void)
Definition: bench.h:179
static int have_flag(int argc, char **argv, char *flag)
Definition: bench.h:132
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen)
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32)
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen)
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:186
#define SECP256K1_CONTEXT_NONE
Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size,...
Definition: secp256k1.h:205
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:140
secp256k1_ge ge[2]
secp256k1_gej gej[2]
int wnaf[256]
secp256k1_scalar scalar[2]
unsigned char data[64]
secp256k1_fe fe[4]
This field implementation represents the value as 10 uint32_t limbs in base 2^26.
Definition: field_10x26.h:14
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
secp256k1_fe x
Definition: group.h:17
secp256k1_fe y
Definition: group.h:18
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
secp256k1_fe y
Definition: group.h:30
secp256k1_fe x
Definition: group.h:29
secp256k1_fe z
Definition: group.h:31
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13