Bitcoin Core  27.99.0
P2P Digital Currency
p2p_transport_serialization.cpp
Go to the documentation of this file.
1 // Copyright (c) 2019-2022 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <chainparams.h>
6 #include <hash.h>
7 #include <net.h>
8 #include <netmessagemaker.h>
9 #include <protocol.h>
11 #include <test/fuzz/fuzz.h>
12 #include <test/fuzz/util.h>
13 #include <util/chaintype.h>
14 
15 #include <cassert>
16 #include <cstdint>
17 #include <limits>
18 #include <optional>
19 #include <vector>
20 
21 namespace {
22 
23 auto g_all_messages = ALL_NET_MESSAGE_TYPES;
24 
25 void initialize_p2p_transport_serialization()
26 {
27  static ECC_Context ecc_context{};
29  std::sort(g_all_messages.begin(), g_all_messages.end());
30 }
31 
32 } // namespace
33 
34 FUZZ_TARGET(p2p_transport_serialization, .init = initialize_p2p_transport_serialization)
35 {
36  // Construct transports for both sides, with dummy NodeIds.
37  V1Transport recv_transport{NodeId{0}};
38  V1Transport send_transport{NodeId{1}};
39 
40  FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
41 
42  auto checksum_assist = fuzzed_data_provider.ConsumeBool();
43  auto magic_bytes_assist = fuzzed_data_provider.ConsumeBool();
44  std::vector<uint8_t> mutable_msg_bytes;
45 
46  auto header_bytes_remaining = CMessageHeader::HEADER_SIZE;
47  if (magic_bytes_assist) {
48  auto msg_start = Params().MessageStart();
49  for (size_t i = 0; i < CMessageHeader::MESSAGE_SIZE_SIZE; ++i) {
50  mutable_msg_bytes.push_back(msg_start[i]);
51  }
52  header_bytes_remaining -= CMessageHeader::MESSAGE_SIZE_SIZE;
53  }
54 
55  if (checksum_assist) {
56  header_bytes_remaining -= CMessageHeader::CHECKSUM_SIZE;
57  }
58 
59  auto header_random_bytes = fuzzed_data_provider.ConsumeBytes<uint8_t>(header_bytes_remaining);
60  mutable_msg_bytes.insert(mutable_msg_bytes.end(), header_random_bytes.begin(), header_random_bytes.end());
61  auto payload_bytes = fuzzed_data_provider.ConsumeRemainingBytes<uint8_t>();
62 
63  if (checksum_assist && mutable_msg_bytes.size() == CMessageHeader::CHECKSUM_OFFSET) {
64  CHash256 hasher;
65  unsigned char hsh[32];
66  hasher.Write(payload_bytes);
67  hasher.Finalize(hsh);
68  for (size_t i = 0; i < CMessageHeader::CHECKSUM_SIZE; ++i) {
69  mutable_msg_bytes.push_back(hsh[i]);
70  }
71  }
72 
73  mutable_msg_bytes.insert(mutable_msg_bytes.end(), payload_bytes.begin(), payload_bytes.end());
74  Span<const uint8_t> msg_bytes{mutable_msg_bytes};
75  while (msg_bytes.size() > 0) {
76  if (!recv_transport.ReceivedBytes(msg_bytes)) {
77  break;
78  }
79  if (recv_transport.ReceivedMessageComplete()) {
80  const std::chrono::microseconds m_time{std::numeric_limits<int64_t>::max()};
81  bool reject_message{false};
82  CNetMessage msg = recv_transport.GetReceivedMessage(m_time, reject_message);
83  assert(msg.m_type.size() <= CMessageHeader::COMMAND_SIZE);
84  assert(msg.m_raw_message_size <= mutable_msg_bytes.size());
85  assert(msg.m_raw_message_size == CMessageHeader::HEADER_SIZE + msg.m_message_size);
86  assert(msg.m_time == m_time);
87 
88  std::vector<unsigned char> header;
89  auto msg2 = NetMsg::Make(msg.m_type, Span{msg.m_recv});
90  bool queued = send_transport.SetMessageToSend(msg2);
91  assert(queued);
92  std::optional<bool> known_more;
93  while (true) {
94  const auto& [to_send, more, _msg_type] = send_transport.GetBytesToSend(false);
95  if (known_more) assert(!to_send.empty() == *known_more);
96  if (to_send.empty()) break;
97  send_transport.MarkBytesSent(to_send.size());
98  known_more = more;
99  }
100  }
101  }
102 }
103 
104 namespace {
105 
106 template<RandomNumberGenerator R>
107 void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDataProvider& provider)
108 {
109  // Simulation test with two Transport objects, which send messages to each other, with
110  // sending and receiving fragmented into multiple pieces that may be interleaved. It primarily
111  // verifies that the sending and receiving side are compatible with each other, plus a few
112  // sanity checks. It does not attempt to introduce errors in the communicated data.
113 
114  // Put the transports in an array for by-index access.
115  const std::array<Transport*, 2> transports = {&initiator, &responder};
116 
117  // Two vectors representing in-flight bytes. inflight[i] is from transport[i] to transport[!i].
118  std::array<std::vector<uint8_t>, 2> in_flight;
119 
120  // Two queues with expected messages. expected[i] is expected to arrive in transport[!i].
121  std::array<std::deque<CSerializedNetMsg>, 2> expected;
122 
123  // Vectors with bytes last returned by GetBytesToSend() on transport[i].
124  std::array<std::vector<uint8_t>, 2> to_send;
125 
126  // Last returned 'more' values (if still relevant) by transport[i]->GetBytesToSend(), for
127  // both have_next_message false and true.
128  std::array<std::optional<bool>, 2> last_more, last_more_next;
129 
130  // Whether more bytes to be sent are expected on transport[i], before and after
131  // SetMessageToSend().
132  std::array<std::optional<bool>, 2> expect_more, expect_more_next;
133 
134  // Function to consume a message type.
135  auto msg_type_fn = [&]() {
136  uint8_t v = provider.ConsumeIntegral<uint8_t>();
137  if (v == 0xFF) {
138  // If v is 0xFF, construct a valid (but possibly unknown) message type from the fuzz
139  // data.
140  std::string ret;
141  while (ret.size() < CMessageHeader::COMMAND_SIZE) {
142  char c = provider.ConsumeIntegral<char>();
143  // Match the allowed characters in CMessageHeader::IsCommandValid(). Any other
144  // character is interpreted as end.
145  if (c < ' ' || c > 0x7E) break;
146  ret += c;
147  }
148  return ret;
149  } else {
150  // Otherwise, use it as index into the list of known messages.
151  return g_all_messages[v % g_all_messages.size()];
152  }
153  };
154 
155  // Function to construct a CSerializedNetMsg to send.
156  auto make_msg_fn = [&](bool first) {
158  if (first) {
159  // Always send a "version" message as first one.
160  msg.m_type = "version";
161  } else {
162  msg.m_type = msg_type_fn();
163  }
164  // Determine size of message to send (limited to 75 kB for performance reasons).
165  size_t size = provider.ConsumeIntegralInRange<uint32_t>(0, 75000);
166  // Get payload of message from RNG.
167  msg.data = rng.randbytes(size);
168  // Return.
169  return msg;
170  };
171 
172  // The next message to be sent (initially version messages, but will be replaced once sent).
173  std::array<CSerializedNetMsg, 2> next_msg = {
174  make_msg_fn(/*first=*/true),
175  make_msg_fn(/*first=*/true)
176  };
177 
178  // Wrapper around transport[i]->GetBytesToSend() that performs sanity checks.
179  auto bytes_to_send_fn = [&](int side) -> Transport::BytesToSend {
180  // Invoke GetBytesToSend twice (for have_next_message = {false, true}). This function does
181  // not modify state (it's const), and only the "more" return value should differ between
182  // the calls.
183  const auto& [bytes, more_nonext, msg_type] = transports[side]->GetBytesToSend(false);
184  const auto& [bytes_next, more_next, msg_type_next] = transports[side]->GetBytesToSend(true);
185  // Compare with expected more.
186  if (expect_more[side].has_value()) assert(!bytes.empty() == *expect_more[side]);
187  // Verify consistency between the two results.
188  assert(bytes == bytes_next);
189  assert(msg_type == msg_type_next);
190  if (more_nonext) assert(more_next);
191  // Compare with previously reported output.
192  assert(to_send[side].size() <= bytes.size());
193  assert(to_send[side] == Span{bytes}.first(to_send[side].size()));
194  to_send[side].resize(bytes.size());
195  std::copy(bytes.begin(), bytes.end(), to_send[side].begin());
196  // Remember 'more' results.
197  last_more[side] = {more_nonext};
198  last_more_next[side] = {more_next};
199  // Return.
200  return {bytes, more_nonext, msg_type};
201  };
202 
203  // Function to make side send a new message.
204  auto new_msg_fn = [&](int side) {
205  // Don't do anything if there are too many unreceived messages already.
206  if (expected[side].size() >= 16) return;
207  // Try to send (a copy of) the message in next_msg[side].
208  CSerializedNetMsg msg = next_msg[side].Copy();
209  bool queued = transports[side]->SetMessageToSend(msg);
210  // Update expected more data.
211  expect_more[side] = expect_more_next[side];
212  expect_more_next[side] = std::nullopt;
213  // Verify consistency of GetBytesToSend after SetMessageToSend
214  bytes_to_send_fn(/*side=*/side);
215  if (queued) {
216  // Remember that this message is now expected by the receiver.
217  expected[side].emplace_back(std::move(next_msg[side]));
218  // Construct a new next message to send.
219  next_msg[side] = make_msg_fn(/*first=*/false);
220  }
221  };
222 
223  // Function to make side send out bytes (if any).
224  auto send_fn = [&](int side, bool everything = false) {
225  const auto& [bytes, more, msg_type] = bytes_to_send_fn(/*side=*/side);
226  // Don't do anything if no bytes to send.
227  if (bytes.empty()) return false;
228  size_t send_now = everything ? bytes.size() : provider.ConsumeIntegralInRange<size_t>(0, bytes.size());
229  if (send_now == 0) return false;
230  // Add bytes to the in-flight queue, and mark those bytes as consumed.
231  in_flight[side].insert(in_flight[side].end(), bytes.begin(), bytes.begin() + send_now);
232  transports[side]->MarkBytesSent(send_now);
233  // If all to-be-sent bytes were sent, move last_more data to expect_more data.
234  if (send_now == bytes.size()) {
235  expect_more[side] = last_more[side];
236  expect_more_next[side] = last_more_next[side];
237  }
238  // Remove the bytes from the last reported to-be-sent vector.
239  assert(to_send[side].size() >= send_now);
240  to_send[side].erase(to_send[side].begin(), to_send[side].begin() + send_now);
241  // Verify that GetBytesToSend gives a result consistent with earlier.
242  bytes_to_send_fn(/*side=*/side);
243  // Return whether anything was sent.
244  return send_now > 0;
245  };
246 
247  // Function to make !side receive bytes (if any).
248  auto recv_fn = [&](int side, bool everything = false) {
249  // Don't do anything if no bytes in flight.
250  if (in_flight[side].empty()) return false;
251  // Decide span to receive
252  size_t to_recv_len = in_flight[side].size();
253  if (!everything) to_recv_len = provider.ConsumeIntegralInRange<size_t>(0, to_recv_len);
254  Span<const uint8_t> to_recv = Span{in_flight[side]}.first(to_recv_len);
255  // Process those bytes
256  while (!to_recv.empty()) {
257  size_t old_len = to_recv.size();
258  bool ret = transports[!side]->ReceivedBytes(to_recv);
259  // Bytes must always be accepted, as this test does not introduce any errors in
260  // communication.
261  assert(ret);
262  // Clear cached expected 'more' information: if certainly no more data was to be sent
263  // before, receiving bytes makes this uncertain.
264  if (expect_more[!side] == false) expect_more[!side] = std::nullopt;
265  if (expect_more_next[!side] == false) expect_more_next[!side] = std::nullopt;
266  // Verify consistency of GetBytesToSend after ReceivedBytes
267  bytes_to_send_fn(/*side=*/!side);
268  bool progress = to_recv.size() < old_len;
269  if (transports[!side]->ReceivedMessageComplete()) {
270  bool reject{false};
271  auto received = transports[!side]->GetReceivedMessage({}, reject);
272  // Receiving must succeed.
273  assert(!reject);
274  // There must be a corresponding expected message.
275  assert(!expected[side].empty());
276  // The m_message_size field must be correct.
277  assert(received.m_message_size == received.m_recv.size());
278  // The m_type must match what is expected.
279  assert(received.m_type == expected[side].front().m_type);
280  // The data must match what is expected.
281  assert(MakeByteSpan(received.m_recv) == MakeByteSpan(expected[side].front().data));
282  expected[side].pop_front();
283  progress = true;
284  }
285  // Progress must be made (by processing incoming bytes and/or returning complete
286  // messages) until all received bytes are processed.
287  assert(progress);
288  }
289  // Remove the processed bytes from the in_flight buffer.
290  in_flight[side].erase(in_flight[side].begin(), in_flight[side].begin() + to_recv_len);
291  // Return whether anything was received.
292  return to_recv_len > 0;
293  };
294 
295  // Main loop, interleaving new messages, sends, and receives.
296  LIMITED_WHILE(provider.remaining_bytes(), 1000) {
297  CallOneOf(provider,
298  // (Try to) give the next message to the transport.
299  [&] { new_msg_fn(/*side=*/0); },
300  [&] { new_msg_fn(/*side=*/1); },
301  // (Try to) send some bytes from the transport to the network.
302  [&] { send_fn(/*side=*/0); },
303  [&] { send_fn(/*side=*/1); },
304  // (Try to) receive bytes from the network, converting to messages.
305  [&] { recv_fn(/*side=*/0); },
306  [&] { recv_fn(/*side=*/1); }
307  );
308  }
309 
310  // When we're done, perform sends and receives of existing messages to flush anything already
311  // in flight.
312  while (true) {
313  bool any = false;
314  if (send_fn(/*side=*/0, /*everything=*/true)) any = true;
315  if (send_fn(/*side=*/1, /*everything=*/true)) any = true;
316  if (recv_fn(/*side=*/0, /*everything=*/true)) any = true;
317  if (recv_fn(/*side=*/1, /*everything=*/true)) any = true;
318  if (!any) break;
319  }
320 
321  // Make sure nothing is left in flight.
322  assert(in_flight[0].empty());
323  assert(in_flight[1].empty());
324 
325  // Make sure all expected messages were received.
326  assert(expected[0].empty());
327  assert(expected[1].empty());
328 
329  // Compare session IDs.
330  assert(transports[0]->GetInfo().session_id == transports[1]->GetInfo().session_id);
331 }
332 
333 std::unique_ptr<Transport> MakeV1Transport(NodeId nodeid) noexcept
334 {
335  return std::make_unique<V1Transport>(nodeid);
336 }
337 
338 template<RandomNumberGenerator RNG>
339 std::unique_ptr<Transport> MakeV2Transport(NodeId nodeid, bool initiator, RNG& rng, FuzzedDataProvider& provider)
340 {
341  // Retrieve key
342  auto key = ConsumePrivateKey(provider);
343  if (!key.IsValid()) return {};
344  // Construct garbage
345  size_t garb_len = provider.ConsumeIntegralInRange<size_t>(0, V2Transport::MAX_GARBAGE_LEN);
346  std::vector<uint8_t> garb;
347  if (garb_len <= 64) {
348  // When the garbage length is up to 64 bytes, read it directly from the fuzzer input.
349  garb = provider.ConsumeBytes<uint8_t>(garb_len);
350  garb.resize(garb_len);
351  } else {
352  // If it's longer, generate it from the RNG. This avoids having large amounts of
353  // (hopefully) irrelevant data needing to be stored in the fuzzer data.
354  garb = rng.randbytes(garb_len);
355  }
356  // Retrieve entropy
357  auto ent = provider.ConsumeBytes<std::byte>(32);
358  ent.resize(32);
359  // Use as entropy SHA256(ent || garbage). This prevents a situation where the fuzzer manages to
360  // include the garbage terminator (which is a function of both ellswift keys) in the garbage.
361  // This is extremely unlikely (~2^-116) with random keys/garbage, but the fuzzer can choose
362  // both non-randomly and dependently. Since the entropy is hashed anyway inside the ellswift
363  // computation, no coverage should be lost by using a hash as entropy, and it removes the
364  // possibility of garbage that happens to contain what is effectively a hash of the keys.
365  CSHA256().Write(UCharCast(ent.data()), ent.size())
366  .Write(garb.data(), garb.size())
367  .Finalize(UCharCast(ent.data()));
368 
369  return std::make_unique<V2Transport>(nodeid, initiator, key, ent, std::move(garb));
370 }
371 
372 } // namespace
373 
374 FUZZ_TARGET(p2p_transport_bidirectional, .init = initialize_p2p_transport_serialization)
375 {
376  // Test with two V1 transports talking to each other.
377  FuzzedDataProvider provider{buffer.data(), buffer.size()};
378  InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
379  auto t1 = MakeV1Transport(NodeId{0});
380  auto t2 = MakeV1Transport(NodeId{1});
381  if (!t1 || !t2) return;
382  SimulationTest(*t1, *t2, rng, provider);
383 }
384 
385 FUZZ_TARGET(p2p_transport_bidirectional_v2, .init = initialize_p2p_transport_serialization)
386 {
387  // Test with two V2 transports talking to each other.
388  FuzzedDataProvider provider{buffer.data(), buffer.size()};
389  InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
390  auto t1 = MakeV2Transport(NodeId{0}, true, rng, provider);
391  auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
392  if (!t1 || !t2) return;
393  SimulationTest(*t1, *t2, rng, provider);
394 }
395 
396 FUZZ_TARGET(p2p_transport_bidirectional_v1v2, .init = initialize_p2p_transport_serialization)
397 {
398  // Test with a V1 initiator talking to a V2 responder.
399  FuzzedDataProvider provider{buffer.data(), buffer.size()};
400  InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
401  auto t1 = MakeV1Transport(NodeId{0});
402  auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
403  if (!t1 || !t2) return;
404  SimulationTest(*t1, *t2, rng, provider);
405 }
int ret
ECC_Context ecc_context
const CChainParams & Params()
Return the currently selected parameters.
void SelectParams(const ChainType chain)
Sets the params returned by Params() to those for the given chain type.
const MessageStartChars & MessageStart() const
Definition: chainparams.h:94
A hasher class for Bitcoin's 256-bit hash (double SHA-256).
Definition: hash.h:24
CHash256 & Write(Span< const unsigned char > input)
Definition: hash.h:37
void Finalize(Span< unsigned char > output)
Definition: hash.h:30
static constexpr size_t CHECKSUM_OFFSET
Definition: protocol.h:35
static constexpr size_t CHECKSUM_SIZE
Definition: protocol.h:33
static constexpr size_t MESSAGE_SIZE_SIZE
Definition: protocol.h:32
static constexpr size_t HEADER_SIZE
Definition: protocol.h:36
static constexpr size_t COMMAND_SIZE
Definition: protocol.h:31
Transport protocol agnostic message container.
Definition: net.h:231
A hasher class for SHA-256.
Definition: sha256.h:14
void Finalize(unsigned char hash[OUTPUT_SIZE])
Definition: sha256.cpp:727
CSHA256 & Write(const unsigned char *data, size_t len)
Definition: sha256.cpp:701
RAII class initializing and deinitializing global state for elliptic curve support.
Definition: key.h:249
std::vector< T > ConsumeBytes(size_t num_bytes)
T ConsumeIntegralInRange(T min, T max)
xoroshiro128++ PRNG.
Definition: random.h:416
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
CONSTEXPR_IF_NOT_DEBUG Span< C > first(std::size_t count) const noexcept
Definition: span.h:205
The Transport converts one connection's sent messages to wire bytes, and received bytes back.
Definition: net.h:251
std::tuple< Span< const uint8_t >, bool, const std::string & > BytesToSend
Return type for GetBytesToSend, consisting of:
Definition: net.h:308
static constexpr uint32_t MAX_GARBAGE_LEN
Definition: net.h:631
void SimulationTest(CCoinsView *base, bool fake_best_block)
#define LIMITED_WHILE(condition, limit)
Can be used to limit a theoretically unbounded loop.
Definition: fuzz.h:22
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
int64_t NodeId
Definition: net.h:97
FUZZ_TARGET(p2p_transport_serialization,.init=initialize_p2p_transport_serialization)
const std::array ALL_NET_MESSAGE_TYPES
All known message types (see above).
Definition: protocol.h:270
unsigned char * UCharCast(char *c)
Definition: span.h:288
Span< const std::byte > MakeByteSpan(V &&v) noexcept
Definition: span.h:277
CKey ConsumePrivateKey(FuzzedDataProvider &fuzzed_data_provider, std::optional< bool > compressed) noexcept
Definition: util.cpp:227
size_t CallOneOf(FuzzedDataProvider &fuzzed_data_provider, Callables... callables)
Definition: util.h:35
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it)
Definition: txmempool.cpp:811
assert(!tx.IsCoinBase())