Bitcoin Core  27.99.0
P2P Digital Currency
scheduler_tests.cpp
Go to the documentation of this file.
1 // Copyright (c) 2012-2022 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <random.h>
6 #include <scheduler.h>
7 #include <util/time.h>
8 
9 #include <boost/test/unit_test.hpp>
10 
11 #include <functional>
12 #include <mutex>
13 #include <thread>
14 #include <vector>
15 
16 BOOST_AUTO_TEST_SUITE(scheduler_tests)
17 
18 static void microTask(CScheduler& s, std::mutex& mutex, int& counter, int delta, std::chrono::steady_clock::time_point rescheduleTime)
19 {
20  {
21  std::lock_guard<std::mutex> lock(mutex);
22  counter += delta;
23  }
24  auto noTime = std::chrono::steady_clock::time_point::min();
25  if (rescheduleTime != noTime) {
26  CScheduler::Function f = std::bind(&microTask, std::ref(s), std::ref(mutex), std::ref(counter), -delta + 1, noTime);
27  s.schedule(f, rescheduleTime);
28  }
29 }
30 
32 {
33  // Stress test: hundreds of microsecond-scheduled tasks,
34  // serviced by 10 threads.
35  //
36  // So... ten shared counters, which if all the tasks execute
37  // properly will sum to the number of tasks done.
38  // Each task adds or subtracts a random amount from one of the
39  // counters, and then schedules another task 0-1000
40  // microseconds in the future to subtract or add from
41  // the counter -random_amount+1, so in the end the shared
42  // counters should sum to the number of initial tasks performed.
43  CScheduler microTasks;
44 
45  std::mutex counterMutex[10];
46  int counter[10] = { 0 };
47  FastRandomContext rng{/*fDeterministic=*/true};
48  auto zeroToNine = [](FastRandomContext& rc) -> int { return rc.randrange(10); }; // [0, 9]
49  auto randomMsec = [](FastRandomContext& rc) -> int { return -11 + (int)rc.randrange(1012); }; // [-11, 1000]
50  auto randomDelta = [](FastRandomContext& rc) -> int { return -1000 + (int)rc.randrange(2001); }; // [-1000, 1000]
51 
52  auto start = std::chrono::steady_clock::now();
53  auto now = start;
54  std::chrono::steady_clock::time_point first, last;
55  size_t nTasks = microTasks.getQueueInfo(first, last);
56  BOOST_CHECK(nTasks == 0);
57 
58  for (int i = 0; i < 100; ++i) {
59  auto t = now + std::chrono::microseconds(randomMsec(rng));
60  auto tReschedule = now + std::chrono::microseconds(500 + randomMsec(rng));
61  int whichCounter = zeroToNine(rng);
62  CScheduler::Function f = std::bind(&microTask, std::ref(microTasks),
63  std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
64  randomDelta(rng), tReschedule);
65  microTasks.schedule(f, t);
66  }
67  nTasks = microTasks.getQueueInfo(first, last);
68  BOOST_CHECK(nTasks == 100);
69  BOOST_CHECK(first < last);
70  BOOST_CHECK(last > now);
71 
72  // As soon as these are created they will start running and servicing the queue
73  std::vector<std::thread> microThreads;
74  microThreads.reserve(10);
75  for (int i = 0; i < 5; i++)
76  microThreads.emplace_back(std::bind(&CScheduler::serviceQueue, &microTasks));
77 
78  UninterruptibleSleep(std::chrono::microseconds{600});
79  now = std::chrono::steady_clock::now();
80 
81  // More threads and more tasks:
82  for (int i = 0; i < 5; i++)
83  microThreads.emplace_back(std::bind(&CScheduler::serviceQueue, &microTasks));
84  for (int i = 0; i < 100; i++) {
85  auto t = now + std::chrono::microseconds(randomMsec(rng));
86  auto tReschedule = now + std::chrono::microseconds(500 + randomMsec(rng));
87  int whichCounter = zeroToNine(rng);
88  CScheduler::Function f = std::bind(&microTask, std::ref(microTasks),
89  std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
90  randomDelta(rng), tReschedule);
91  microTasks.schedule(f, t);
92  }
93 
94  // Drain the task queue then exit threads
95  microTasks.StopWhenDrained();
96  // wait until all the threads are done
97  for (auto& thread: microThreads) {
98  if (thread.joinable()) thread.join();
99  }
100 
101  int counterSum = 0;
102  for (int i = 0; i < 10; i++) {
103  BOOST_CHECK(counter[i] != 0);
104  counterSum += counter[i];
105  }
106  BOOST_CHECK_EQUAL(counterSum, 200);
107 }
108 
109 BOOST_AUTO_TEST_CASE(wait_until_past)
110 {
111  std::condition_variable condvar;
112  Mutex mtx;
113  WAIT_LOCK(mtx, lock);
114 
115  const auto no_wait = [&](const std::chrono::seconds& d) {
116  return condvar.wait_until(lock, std::chrono::steady_clock::now() - d);
117  };
118 
119  BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::seconds{1}));
120  BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::minutes{1}));
121  BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{1}));
122  BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{10}));
123  BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{100}));
124  BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{1000}));
125 }
126 
127 BOOST_AUTO_TEST_CASE(singlethreadedscheduler_ordered)
128 {
129  CScheduler scheduler;
130 
131  // each queue should be well ordered with respect to itself but not other queues
132  SerialTaskRunner queue1(scheduler);
133  SerialTaskRunner queue2(scheduler);
134 
135  // create more threads than queues
136  // if the queues only permit execution of one task at once then
137  // the extra threads should effectively be doing nothing
138  // if they don't we'll get out of order behaviour
139  std::vector<std::thread> threads;
140  threads.reserve(5);
141  for (int i = 0; i < 5; ++i) {
142  threads.emplace_back([&] { scheduler.serviceQueue(); });
143  }
144 
145  // these are not atomic, if SerialTaskRunner prevents
146  // parallel execution at the queue level no synchronization should be required here
147  int counter1 = 0;
148  int counter2 = 0;
149 
150  // just simply count up on each queue - if execution is properly ordered then
151  // the callbacks should run in exactly the order in which they were enqueued
152  for (int i = 0; i < 100; ++i) {
153  queue1.insert([i, &counter1]() {
154  bool expectation = i == counter1++;
155  assert(expectation);
156  });
157 
158  queue2.insert([i, &counter2]() {
159  bool expectation = i == counter2++;
160  assert(expectation);
161  });
162  }
163 
164  // finish up
165  scheduler.StopWhenDrained();
166  for (auto& thread: threads) {
167  if (thread.joinable()) thread.join();
168  }
169 
170  BOOST_CHECK_EQUAL(counter1, 100);
171  BOOST_CHECK_EQUAL(counter2, 100);
172 }
173 
175 {
176  CScheduler scheduler;
177 
178  int counter{0};
179  CScheduler::Function dummy = [&counter]{counter++;};
180 
181  // schedule jobs for 2, 5 & 8 minutes into the future
182 
183  scheduler.scheduleFromNow(dummy, std::chrono::minutes{2});
184  scheduler.scheduleFromNow(dummy, std::chrono::minutes{5});
185  scheduler.scheduleFromNow(dummy, std::chrono::minutes{8});
186 
187  // check taskQueue
188  std::chrono::steady_clock::time_point first, last;
189  size_t num_tasks = scheduler.getQueueInfo(first, last);
190  BOOST_CHECK_EQUAL(num_tasks, 3ul);
191 
192  std::thread scheduler_thread([&]() { scheduler.serviceQueue(); });
193 
194  // bump the scheduler forward 5 minutes
195  scheduler.MockForward(std::chrono::minutes{5});
196 
197  // ensure scheduler has chance to process all tasks queued for before 1 ms from now.
198  scheduler.scheduleFromNow([&scheduler] { scheduler.stop(); }, std::chrono::milliseconds{1});
199  scheduler_thread.join();
200 
201  // check that the queue only has one job remaining
202  num_tasks = scheduler.getQueueInfo(first, last);
203  BOOST_CHECK_EQUAL(num_tasks, 1ul);
204 
205  // check that the dummy function actually ran
206  BOOST_CHECK_EQUAL(counter, 2);
207 
208  // check that the time of the remaining job has been updated
209  auto now = std::chrono::steady_clock::now();
210  int delta = std::chrono::duration_cast<std::chrono::seconds>(first - now).count();
211  // should be between 2 & 3 minutes from now
212  BOOST_CHECK(delta > 2*60 && delta < 3*60);
213 }
214 
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void MockForward(std::chrono::seconds delta_seconds) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Mock the scheduler to fast forward in time.
Definition: scheduler.cpp:80
void serviceQueue() EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Services the queue 'forever'.
Definition: scheduler.cpp:23
size_t getQueueInfo(std::chrono::steady_clock::time_point &first, std::chrono::steady_clock::time_point &last) const EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Returns number of tasks waiting to be serviced, and first and last task times.
Definition: scheduler.cpp:113
std::function< void()> Function
Definition: scheduler.h:47
void StopWhenDrained() EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Tell any threads running serviceQueue to stop when there is no work left to be done.
Definition: scheduler.h:86
void stop() EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Tell any threads running serviceQueue to stop as soon as the current task is done.
Definition: scheduler.h:79
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
void schedule(Function f, std::chrono::steady_clock::time_point t) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call func at/after time t.
Definition: scheduler.cpp:71
Fast randomness source.
Definition: random.h:145
uint64_t randrange(uint64_t range) noexcept
Generate a random integer in the range [0..range).
Definition: random.h:203
Class used by CScheduler clients which may schedule multiple jobs which are required to be run serial...
Definition: scheduler.h:125
void insert(std::function< void()> func) override EXCLUSIVE_LOCKS_REQUIRED(!m_callbacks_mutex)
Add a callback to be executed.
Definition: scheduler.cpp:176
BOOST_AUTO_TEST_SUITE(cuckoocache_tests)
Test Suite for CuckooCache.
BOOST_AUTO_TEST_SUITE_END()
#define BOOST_CHECK_EQUAL(v1, v2)
Definition: object.cpp:18
#define BOOST_CHECK(expr)
Definition: object.cpp:17
BOOST_AUTO_TEST_CASE(manythreads)
static void microTask(CScheduler &s, std::mutex &mutex, int &counter, int delta, std::chrono::steady_clock::time_point rescheduleTime)
#define WAIT_LOCK(cs, name)
Definition: sync.h:262
void UninterruptibleSleep(const std::chrono::microseconds &n)
Definition: time.cpp:17
assert(!tx.IsCoinBase())