Bitcoin Core  27.99.0
P2P Digital Currency
key.cpp
Go to the documentation of this file.
1 // Copyright (c) 2020-2022 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <chainparams.h>
6 #include <key.h>
7 #include <key_io.h>
8 #include <outputtype.h>
9 #include <policy/policy.h>
10 #include <pubkey.h>
11 #include <rpc/util.h>
12 #include <script/keyorigin.h>
13 #include <script/script.h>
14 #include <script/sign.h>
15 #include <script/signingprovider.h>
16 #include <script/solver.h>
17 #include <streams.h>
19 #include <test/fuzz/fuzz.h>
20 #include <test/fuzz/util.h>
21 #include <util/chaintype.h>
22 #include <util/strencodings.h>
23 
24 #include <array>
25 #include <cassert>
26 #include <cstddef>
27 #include <cstdint>
28 #include <numeric>
29 #include <optional>
30 #include <string>
31 #include <vector>
32 
34 {
35  static ECC_Context ecc_context{};
37 }
38 
40 {
41  const CKey key = [&] {
42  CKey k;
43  k.Set(buffer.begin(), buffer.end(), true);
44  return k;
45  }();
46  if (!key.IsValid()) {
47  return;
48  }
49 
50  {
51  assert(key.begin() + key.size() == key.end());
52  assert(key.IsCompressed());
53  assert(key.size() == 32);
54  assert(DecodeSecret(EncodeSecret(key)) == key);
55  }
56 
57  {
58  CKey invalid_key;
59  assert(!(invalid_key == key));
60  assert(!invalid_key.IsCompressed());
61  assert(!invalid_key.IsValid());
62  assert(invalid_key.size() == 0);
63  }
64 
65  {
66  CKey uncompressed_key;
67  uncompressed_key.Set(buffer.begin(), buffer.end(), false);
68  assert(!(uncompressed_key == key));
69  assert(!uncompressed_key.IsCompressed());
70  assert(key.size() == 32);
71  assert(uncompressed_key.begin() + uncompressed_key.size() == uncompressed_key.end());
72  assert(uncompressed_key.IsValid());
73  }
74 
75  {
76  CKey copied_key;
77  copied_key.Set(key.begin(), key.end(), key.IsCompressed());
78  assert(copied_key == key);
79  }
80 
81  const uint256 random_uint256 = Hash(buffer);
82 
83  {
84  CKey child_key;
85  ChainCode child_chaincode;
86  const bool ok = key.Derive(child_key, child_chaincode, 0, random_uint256);
87  assert(ok);
88  assert(child_key.IsValid());
89  assert(!(child_key == key));
90  assert(child_chaincode != random_uint256);
91  }
92 
93  const CPubKey pubkey = key.GetPubKey();
94 
95  {
96  assert(pubkey.size() == 33);
97  assert(key.VerifyPubKey(pubkey));
98  assert(pubkey.GetHash() != random_uint256);
99  assert(pubkey.begin() + pubkey.size() == pubkey.end());
100  assert(pubkey.data() == pubkey.begin());
101  assert(pubkey.IsCompressed());
102  assert(pubkey.IsValid());
103  assert(pubkey.IsFullyValid());
104  assert(HexToPubKey(HexStr(pubkey)) == pubkey);
105  assert(GetAllDestinationsForKey(pubkey).size() == 3);
106  }
107 
108  {
109  DataStream data_stream{};
110  pubkey.Serialize(data_stream);
111 
112  CPubKey pubkey_deserialized;
113  pubkey_deserialized.Unserialize(data_stream);
114  assert(pubkey_deserialized == pubkey);
115  }
116 
117  {
118  const CScript tx_pubkey_script = GetScriptForRawPubKey(pubkey);
119  assert(!tx_pubkey_script.IsPayToScriptHash());
120  assert(!tx_pubkey_script.IsPayToWitnessScriptHash());
121  assert(!tx_pubkey_script.IsPushOnly());
122  assert(!tx_pubkey_script.IsUnspendable());
123  assert(tx_pubkey_script.HasValidOps());
124  assert(tx_pubkey_script.size() == 35);
125 
126  const CScript tx_multisig_script = GetScriptForMultisig(1, {pubkey});
127  assert(!tx_multisig_script.IsPayToScriptHash());
128  assert(!tx_multisig_script.IsPayToWitnessScriptHash());
129  assert(!tx_multisig_script.IsPushOnly());
130  assert(!tx_multisig_script.IsUnspendable());
131  assert(tx_multisig_script.HasValidOps());
132  assert(tx_multisig_script.size() == 37);
133 
134  FillableSigningProvider fillable_signing_provider;
135  assert(!IsSegWitOutput(fillable_signing_provider, tx_pubkey_script));
136  assert(!IsSegWitOutput(fillable_signing_provider, tx_multisig_script));
137  assert(fillable_signing_provider.GetKeys().size() == 0);
138  assert(!fillable_signing_provider.HaveKey(pubkey.GetID()));
139 
140  const bool ok_add_key = fillable_signing_provider.AddKey(key);
141  assert(ok_add_key);
142  assert(fillable_signing_provider.HaveKey(pubkey.GetID()));
143 
144  FillableSigningProvider fillable_signing_provider_pub;
145  assert(!fillable_signing_provider_pub.HaveKey(pubkey.GetID()));
146 
147  const bool ok_add_key_pubkey = fillable_signing_provider_pub.AddKeyPubKey(key, pubkey);
148  assert(ok_add_key_pubkey);
149  assert(fillable_signing_provider_pub.HaveKey(pubkey.GetID()));
150 
151  TxoutType which_type_tx_pubkey;
152  const bool is_standard_tx_pubkey = IsStandard(tx_pubkey_script, std::nullopt, which_type_tx_pubkey);
153  assert(is_standard_tx_pubkey);
154  assert(which_type_tx_pubkey == TxoutType::PUBKEY);
155 
156  TxoutType which_type_tx_multisig;
157  const bool is_standard_tx_multisig = IsStandard(tx_multisig_script, std::nullopt, which_type_tx_multisig);
158  assert(is_standard_tx_multisig);
159  assert(which_type_tx_multisig == TxoutType::MULTISIG);
160 
161  std::vector<std::vector<unsigned char>> v_solutions_ret_tx_pubkey;
162  const TxoutType outtype_tx_pubkey = Solver(tx_pubkey_script, v_solutions_ret_tx_pubkey);
163  assert(outtype_tx_pubkey == TxoutType::PUBKEY);
164  assert(v_solutions_ret_tx_pubkey.size() == 1);
165  assert(v_solutions_ret_tx_pubkey[0].size() == 33);
166 
167  std::vector<std::vector<unsigned char>> v_solutions_ret_tx_multisig;
168  const TxoutType outtype_tx_multisig = Solver(tx_multisig_script, v_solutions_ret_tx_multisig);
169  assert(outtype_tx_multisig == TxoutType::MULTISIG);
170  assert(v_solutions_ret_tx_multisig.size() == 3);
171  assert(v_solutions_ret_tx_multisig[0].size() == 1);
172  assert(v_solutions_ret_tx_multisig[1].size() == 33);
173  assert(v_solutions_ret_tx_multisig[2].size() == 1);
174 
175  OutputType output_type{};
176  const CTxDestination tx_destination = GetDestinationForKey(pubkey, output_type);
177  assert(output_type == OutputType::LEGACY);
178  assert(IsValidDestination(tx_destination));
179  assert(PKHash{pubkey} == *std::get_if<PKHash>(&tx_destination));
180 
181  const CScript script_for_destination = GetScriptForDestination(tx_destination);
182  assert(script_for_destination.size() == 25);
183 
184  const std::string destination_address = EncodeDestination(tx_destination);
185  assert(DecodeDestination(destination_address) == tx_destination);
186 
187  const CPubKey pubkey_from_address_string = AddrToPubKey(fillable_signing_provider, destination_address);
188  assert(pubkey_from_address_string == pubkey);
189 
190  CKeyID key_id = pubkey.GetID();
191  assert(!key_id.IsNull());
192  assert(key_id == CKeyID{key_id});
193  assert(key_id == GetKeyForDestination(fillable_signing_provider, tx_destination));
194 
195  CPubKey pubkey_out;
196  const bool ok_get_pubkey = fillable_signing_provider.GetPubKey(key_id, pubkey_out);
197  assert(ok_get_pubkey);
198 
199  CKey key_out;
200  const bool ok_get_key = fillable_signing_provider.GetKey(key_id, key_out);
201  assert(ok_get_key);
202  assert(fillable_signing_provider.GetKeys().size() == 1);
203  assert(fillable_signing_provider.HaveKey(key_id));
204 
205  KeyOriginInfo key_origin_info;
206  const bool ok_get_key_origin = fillable_signing_provider.GetKeyOrigin(key_id, key_origin_info);
207  assert(!ok_get_key_origin);
208  }
209 
210  {
211  const std::vector<unsigned char> vch_pubkey{pubkey.begin(), pubkey.end()};
212  assert(CPubKey::ValidSize(vch_pubkey));
213  assert(!CPubKey::ValidSize({pubkey.begin(), pubkey.begin() + pubkey.size() - 1}));
214 
215  const CPubKey pubkey_ctor_1{vch_pubkey};
216  assert(pubkey == pubkey_ctor_1);
217 
218  const CPubKey pubkey_ctor_2{vch_pubkey.begin(), vch_pubkey.end()};
219  assert(pubkey == pubkey_ctor_2);
220 
221  CPubKey pubkey_set;
222  pubkey_set.Set(vch_pubkey.begin(), vch_pubkey.end());
223  assert(pubkey == pubkey_set);
224  }
225 
226  {
227  const CPubKey invalid_pubkey{};
228  assert(!invalid_pubkey.IsValid());
229  assert(!invalid_pubkey.IsFullyValid());
230  assert(!(pubkey == invalid_pubkey));
231  assert(pubkey != invalid_pubkey);
232  assert(pubkey < invalid_pubkey);
233  }
234 
235  {
236  // Cover CPubKey's operator[](unsigned int pos)
237  unsigned int sum = 0;
238  for (size_t i = 0; i < pubkey.size(); ++i) {
239  sum += pubkey[i];
240  }
241  assert(std::accumulate(pubkey.begin(), pubkey.end(), 0U) == sum);
242  }
243 
244  {
245  CPubKey decompressed_pubkey = pubkey;
246  assert(decompressed_pubkey.IsCompressed());
247 
248  const bool ok = decompressed_pubkey.Decompress();
249  assert(ok);
250  assert(!decompressed_pubkey.IsCompressed());
251  assert(decompressed_pubkey.size() == 65);
252  }
253 
254  {
255  std::vector<unsigned char> vch_sig;
256  const bool ok = key.Sign(random_uint256, vch_sig, false);
257  assert(ok);
258  assert(pubkey.Verify(random_uint256, vch_sig));
259  assert(CPubKey::CheckLowS(vch_sig));
260 
261  const std::vector<unsigned char> vch_invalid_sig{vch_sig.begin(), vch_sig.begin() + vch_sig.size() - 1};
262  assert(!pubkey.Verify(random_uint256, vch_invalid_sig));
263  assert(!CPubKey::CheckLowS(vch_invalid_sig));
264  }
265 
266  {
267  std::vector<unsigned char> vch_compact_sig;
268  const bool ok_sign_compact = key.SignCompact(random_uint256, vch_compact_sig);
269  assert(ok_sign_compact);
270 
271  CPubKey recover_pubkey;
272  const bool ok_recover_compact = recover_pubkey.RecoverCompact(random_uint256, vch_compact_sig);
273  assert(ok_recover_compact);
274  assert(recover_pubkey == pubkey);
275  }
276 
277  {
278  CPubKey child_pubkey;
279  ChainCode child_chaincode;
280  const bool ok = pubkey.Derive(child_pubkey, child_chaincode, 0, random_uint256);
281  assert(ok);
282  assert(child_pubkey != pubkey);
283  assert(child_pubkey.IsCompressed());
284  assert(child_pubkey.IsFullyValid());
285  assert(child_pubkey.IsValid());
286  assert(child_pubkey.size() == 33);
287  assert(child_chaincode != random_uint256);
288  }
289 
290  const CPrivKey priv_key = key.GetPrivKey();
291 
292  {
293  for (const bool skip_check : {true, false}) {
294  CKey loaded_key;
295  const bool ok = loaded_key.Load(priv_key, pubkey, skip_check);
296  assert(ok);
297  assert(key == loaded_key);
298  }
299  }
300 }
301 
302 FUZZ_TARGET(ellswift_roundtrip, .init = initialize_key)
303 {
304  FuzzedDataProvider fdp{buffer.data(), buffer.size()};
305 
306  CKey key = ConsumePrivateKey(fdp, /*compressed=*/true);
307  if (!key.IsValid()) return;
308 
309  auto ent32 = fdp.ConsumeBytes<std::byte>(32);
310  ent32.resize(32);
311 
312  auto encoded_ellswift = key.EllSwiftCreate(ent32);
313  auto decoded_pubkey = encoded_ellswift.Decode();
314 
315  uint256 hash{ConsumeUInt256(fdp)};
316  std::vector<unsigned char> sig;
317  key.Sign(hash, sig);
318  assert(decoded_pubkey.Verify(hash, sig));
319 }
320 
322 {
323  FuzzedDataProvider fdp{buffer.data(), buffer.size()};
324 
325  // We generate private key, k1.
326  CKey k1 = ConsumePrivateKey(fdp, /*compressed=*/true);
327  if (!k1.IsValid()) return;
328 
329  // They generate private key, k2.
330  CKey k2 = ConsumePrivateKey(fdp, /*compressed=*/true);
331  if (!k2.IsValid()) return;
332 
333  // We construct an ellswift encoding for our key, k1_ellswift.
334  auto ent32_1 = fdp.ConsumeBytes<std::byte>(32);
335  ent32_1.resize(32);
336  auto k1_ellswift = k1.EllSwiftCreate(ent32_1);
337 
338  // They construct an ellswift encoding for their key, k2_ellswift.
339  auto ent32_2 = fdp.ConsumeBytes<std::byte>(32);
340  ent32_2.resize(32);
341  auto k2_ellswift = k2.EllSwiftCreate(ent32_2);
342 
343  // They construct another (possibly distinct) ellswift encoding for their key, k2_ellswift_bad.
344  auto ent32_2_bad = fdp.ConsumeBytes<std::byte>(32);
345  ent32_2_bad.resize(32);
346  auto k2_ellswift_bad = k2.EllSwiftCreate(ent32_2_bad);
347  assert((ent32_2_bad == ent32_2) == (k2_ellswift_bad == k2_ellswift));
348 
349  // Determine who is who.
350  bool initiating = fdp.ConsumeBool();
351 
352  // We compute our shared secret using our key and their public key.
353  auto ecdh_secret_1 = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, initiating);
354  // They compute their shared secret using their key and our public key.
355  auto ecdh_secret_2 = k2.ComputeBIP324ECDHSecret(k1_ellswift, k2_ellswift, !initiating);
356  // Those must match, as everyone is behaving correctly.
357  assert(ecdh_secret_1 == ecdh_secret_2);
358 
359  if (k1_ellswift != k2_ellswift) {
360  // Unless the two keys are exactly identical, acting as the wrong party breaks things.
361  auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, !initiating);
362  assert(ecdh_secret_bad != ecdh_secret_1);
363  }
364 
365  if (k2_ellswift_bad != k2_ellswift) {
366  // Unless both encodings created by them are identical, using the second one breaks things.
367  auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift_bad, k1_ellswift, initiating);
368  assert(ecdh_secret_bad != ecdh_secret_1);
369  }
370 }
bool IsValidDestination(const CTxDestination &dest)
Check whether a CTxDestination corresponds to one with an address.
CScript GetScriptForDestination(const CTxDestination &dest)
Generate a Bitcoin scriptPubKey for the given CTxDestination.
std::variant< CNoDestination, PubKeyDestination, PKHash, ScriptHash, WitnessV0ScriptHash, WitnessV0KeyHash, WitnessV1Taproot, WitnessUnknown > CTxDestination
A txout script categorized into standard templates.
Definition: addresstype.h:131
ECC_Context ecc_context
void SelectParams(const ChainType chain)
Sets the params returned by Params() to those for the given chain type.
An encapsulated private key.
Definition: key.h:33
const std::byte * end() const
Definition: key.h:118
unsigned int size() const
Simple read-only vector-like interface.
Definition: key.h:115
bool IsValid() const
Check whether this private key is valid.
Definition: key.h:121
bool Sign(const uint256 &hash, std::vector< unsigned char > &vchSig, bool grind=true, uint32_t test_case=0) const
Create a DER-serialized signature.
Definition: key.cpp:208
ECDHSecret ComputeBIP324ECDHSecret(const EllSwiftPubKey &their_ellswift, const EllSwiftPubKey &our_ellswift, bool initiating) const
Compute a BIP324-style ECDH shared secret.
Definition: key.cpp:346
CPrivKey GetPrivKey() const
Convert the private key to a CPrivKey (serialized OpenSSL private key data).
Definition: key.cpp:169
bool IsCompressed() const
Check whether the public key corresponding to this private key is (to be) compressed.
Definition: key.h:124
CPubKey GetPubKey() const
Compute the public key from a private key.
Definition: key.cpp:182
void Set(const T pbegin, const T pend, bool fCompressedIn)
Initialize using begin and end iterators to byte data.
Definition: key.h:101
bool VerifyPubKey(const CPubKey &vchPubKey) const
Verify thoroughly whether a private key and a public key match.
Definition: key.cpp:236
EllSwiftPubKey EllSwiftCreate(Span< const std::byte > entropy) const
Create an ellswift-encoded public key for this key, with specified entropy.
Definition: key.cpp:330
bool Load(const CPrivKey &privkey, const CPubKey &vchPubKey, bool fSkipCheck)
Load private key and check that public key matches.
Definition: key.cpp:297
const std::byte * begin() const
Definition: key.h:117
bool Derive(CKey &keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode &cc) const
Derive BIP32 child key.
Definition: key.cpp:311
bool SignCompact(const uint256 &hash, std::vector< unsigned char > &vchSig) const
Create a compact signature (65 bytes), which allows reconstructing the used public key.
Definition: key.cpp:249
A reference to a CKey: the Hash160 of its serialized public key.
Definition: pubkey.h:24
An encapsulated public key.
Definition: pubkey.h:34
bool RecoverCompact(const uint256 &hash, const std::vector< unsigned char > &vchSig)
Recover a public key from a compact signature.
Definition: pubkey.cpp:296
const unsigned char * end() const
Definition: pubkey.h:115
bool IsCompressed() const
Check whether this is a compressed public key.
Definition: pubkey.h:204
CKeyID GetID() const
Get the KeyID of this public key (hash of its serialization)
Definition: pubkey.h:164
static bool CheckLowS(const std::vector< unsigned char > &vchSig)
Check whether a signature is normalized (lower-S).
Definition: pubkey.cpp:417
bool IsValid() const
Definition: pubkey.h:189
bool Decompress()
Turn this public key into an uncompressed public key.
Definition: pubkey.cpp:323
bool Verify(const uint256 &hash, const std::vector< unsigned char > &vchSig) const
Verify a DER signature (~72 bytes).
Definition: pubkey.cpp:279
bool IsFullyValid() const
fully validate whether this is a valid public key (more expensive than IsValid())
Definition: pubkey.cpp:316
unsigned int size() const
Simple read-only vector-like interface to the pubkey data.
Definition: pubkey.h:112
static bool ValidSize(const std::vector< unsigned char > &vch)
Definition: pubkey.h:77
const unsigned char * begin() const
Definition: pubkey.h:114
void Serialize(Stream &s) const
Implement serialization, as if this was a byte vector.
Definition: pubkey.h:141
void Unserialize(Stream &s)
Definition: pubkey.h:148
uint256 GetHash() const
Get the 256-bit hash of this public key.
Definition: pubkey.h:170
const unsigned char * data() const
Definition: pubkey.h:113
bool Derive(CPubKey &pubkeyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode &cc) const
Derive BIP32 child pubkey.
Definition: pubkey.cpp:337
void Set(const T pbegin, const T pend)
Initialize a public key using begin/end iterators to byte data.
Definition: pubkey.h:89
Serialized script, used inside transaction inputs and outputs.
Definition: script.h:414
bool IsPushOnly(const_iterator pc) const
Called by IsStandardTx and P2SH/BIP62 VerifyScript (which makes it consensus-critical).
Definition: script.cpp:242
bool IsPayToScriptHash() const
Definition: script.cpp:207
bool IsUnspendable() const
Returns whether the script is guaranteed to fail at execution, regardless of the initial stack.
Definition: script.h:552
bool IsPayToWitnessScriptHash() const
Definition: script.cpp:216
bool HasValidOps() const
Check if the script contains valid OP_CODES.
Definition: script.cpp:276
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
RAII class initializing and deinitializing global state for elliptic curve support.
Definition: key.h:249
Fillable signing provider that keeps keys in an address->secret map.
virtual bool AddKeyPubKey(const CKey &key, const CPubKey &pubkey)
virtual bool GetPubKey(const CKeyID &address, CPubKey &vchPubKeyOut) const override
virtual bool GetKey(const CKeyID &address, CKey &keyOut) const override
virtual std::set< CKeyID > GetKeys() const
virtual bool AddKey(const CKey &key)
virtual bool HaveKey(const CKeyID &address) const override
virtual bool GetKeyOrigin(const CKeyID &keyid, KeyOriginInfo &info) const
constexpr bool IsNull() const
Definition: uint256.h:44
size_type size() const
Definition: prevector.h:296
256-bit opaque blob.
Definition: uint256.h:127
volatile double sum
Definition: examples.cpp:10
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const Span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
std::vector< unsigned char, secure_allocator< unsigned char > > CPrivKey
CPrivKey is a serialized private key, with all parameters included (SIZE bytes)
Definition: key.h:23
CTxDestination DecodeDestination(const std::string &str, std::string &error_msg, std::vector< int > *error_locations)
Definition: key_io.cpp:292
std::string EncodeSecret(const CKey &key)
Definition: key_io.cpp:227
std::string EncodeDestination(const CTxDestination &dest)
Definition: key_io.cpp:287
CKey DecodeSecret(const std::string &str)
Definition: key_io.cpp:209
CTxDestination GetDestinationForKey(const CPubKey &key, OutputType type)
Get a destination of the requested type (if possible) to the specified key.
Definition: outputtype.cpp:50
std::vector< CTxDestination > GetAllDestinationsForKey(const CPubKey &key)
Get all destinations (potentially) supported by the wallet for the given key.
Definition: outputtype.cpp:71
OutputType
Definition: outputtype.h:17
bool IsStandard(const CScript &scriptPubKey, const std::optional< unsigned > &max_datacarrier_bytes, TxoutType &whichType)
Definition: policy.cpp:70
CPubKey HexToPubKey(const std::string &hex_in)
Definition: util.cpp:204
CPubKey AddrToPubKey(const FillableSigningProvider &keystore, const std::string &addr_in)
Definition: util.cpp:220
bool IsSegWitOutput(const SigningProvider &provider, const CScript &script)
Check whether a scriptPubKey is known to be segwit.
Definition: sign.cpp:765
CKeyID GetKeyForDestination(const SigningProvider &store, const CTxDestination &dest)
Return the CKeyID of the key involved in a script (if there is a unique one).
TxoutType Solver(const CScript &scriptPubKey, std::vector< std::vector< unsigned char >> &vSolutionsRet)
Parse a scriptPubKey and identify script type for standard scripts.
Definition: solver.cpp:140
CScript GetScriptForMultisig(int nRequired, const std::vector< CPubKey > &keys)
Generate a multisig script.
Definition: solver.cpp:214
CScript GetScriptForRawPubKey(const CPubKey &pubKey)
Generate a P2PK script for the given pubkey.
Definition: solver.cpp:209
TxoutType
Definition: solver.h:22
CPubKey Decode() const
Decode to normal compressed CPubKey (for debugging purposes).
Definition: pubkey.cpp:364
void initialize_key()
Definition: key.cpp:33
FUZZ_TARGET(key,.init=initialize_key)
Definition: key.cpp:39
CKey ConsumePrivateKey(FuzzedDataProvider &fuzzed_data_provider, std::optional< bool > compressed) noexcept
Definition: util.cpp:227
uint256 ConsumeUInt256(FuzzedDataProvider &fuzzed_data_provider) noexcept
Definition: util.h:169
assert(!tx.IsCoinBase())